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Julius Miklowitz

1919-1992

Julius Miklowitz, Professor of Applied Mechanics, Emer
itus, at the California Institute of Technology, died on March
15, 1992 after many years of struggle with the debilitating
effects of multiple sclerosis. He was 72 years old. He is survived
by his wife Gloria and two sons, Dr. Paul S. Miklowitz and
Dr. David J. Miklowitz.

Miklowitz was a leader· in studies on wave propagation in
elastic solids and waveguides. He developed analytical tech
niques to study scattering and diffraction of elastic waves and
to obtain the transient response of beams, plates, and shells
for a variety of time-varying loading conditions.

Miklowitz earned his B.S. degree in Mechanical Engineering
from the University of Michigan in 1943. During World War
II he conducted research at the Westinghouse Research Lab
oratory where his work focused on the inelastic behavior and
fracture of metals and polymers for a broad spectrum ofrates
and types of loading. In 1949 he became Associate Professor
of Mathematics and Engineering at the New Mexico Institute
of Mining and Technology. From 1951 to 1955 he was a con
sultant in solid mechanics and wave propagation in solids at
the Naval Undersea Warfare Center. Miklowitz came to Cal
Tech in 1956 as Associate Professor of Applied Mechanics.
He was named Professor of Applied Mechanics in 1962 and
Professor Emeritus in 1985.

As he related on occasion, Julius found his way into the
subject of waves in solids quite accidentally early in his career.
In experiments with plexiglass tension specimens, a few of the
specimens in these static tests broke suddenly and in a brittle
manner in two places. Simple wave analysis, discussed in one
of his first papers published in this Journal (Vol. 20, 1953,
pp. 120-130), showed that the second fracture was created
through a series of reflections of the unloading wave, generated
by the first fracture, from the ends of the remaining clamped
part of the specimen. This paper was one of the early works
in an area, dynamic fracture, which has remained of interest
through the years.

Julius was a master in the application of Fourier transform
techniques to solve elastic wave propagation problems. He
developed to a fine art the capability to lift from complicated
mathematical expressions those defining parts that are directly
related to significant physical effects.

Later in his career Julius became totally fascinated, perhaps
obsessed, with finding analytical elastodynamic solutions to
the quarter-space problem and to related corner problems with
unmixed conditions. He made significant progress and for this

Journal of Applied Mechanics

Julius Mlklowltz, Ph.D.

particular class of problems his work pushed to the limit the
use of classical techniques of applied mathematics.

Miklowitz was the author of more than 50 technical papers.
His book, Theory ofElastic Waves and Waveguides, was pub
lished in 1978. The book presents a comprehensive treatment
of the propagation of waves in elastic solids. It deals with time
harmonic as well as transient wave motion, and discusses waves
in waveguides and scattering and diffraction problems. He was
a member of the Board of Editors of WA VE MOTION since
its inception.

Julius was actively involved with the Applied Mechanics
Division throughout his career. He served on the Executive
Committee of the Applied Mechanics Division from 1970 until
1976.

In all of his work Julius projected an infectious enthusiasm.
Many will remember the tall speaker at meetings of the Applied
Mechanics Division-presenting an invited lecture or a con
tributed paper, holding forth on the intricate details of Fourier
transform applications to elastic wave propagation problems.

Julius Miklowitz was a gentleman and a scholar in the finest
applied mechanics tradition. He will be remembered fondly
by his students, colleagues, and friends.

J. D. Achenbach
Northwestern University
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R. P. Nordgren 
Department of Civil Engineering 

Rice University 
Houston, TX 77251 

Fellow ASME 

Limit Analysis of a Stochastically 
Inhomogeneous Plastic Medium 
With Application to Plane Contact 
Problems1 

The lower and upper bound theorems of plastic limit analysis are extended to a 
stochastically inhomogeneous medium. The extended theorems provide bounds on 
the mean safety factor against plastic collapse. A three-parameter yield function is 
treated by introducing a spatial correlation function for uniaxial yield strength. 
Application of the stochastic upper-bound theorem is made to the plane problem 
of a truncated wedge under contact pressure. The results apply to the design of 
arctic structures against local ice pressure. 

Introduction 
For many problems in the mechanics of solids, the material 

may be considered to be homogeneous. For other problems, 
the effect of inhomogeneity is important enough to be con
sidered in the material model. Of special concern are problems 
involving yield or failure over regions of weakness. In partic
ular, ice and rock generally are inhomogeneous and may fail 
in this manner. If the inhomogeneity is irregular and random 
in nature, then a stochastic description of material strength is 
required. 

The present paper treats an elastic/perfectly plastic material 
with stochastically inhomogeneous yield strength. For a body 
of this material, the first and second collapse theorems of limit 
analysis are extended to give lower and upper bounds on the 
mean safety factor against plastic collapse under a given load 
system. The theorems are specialized to a three-parameter yield 
function which quadratically relates mean shear stress at yield 
to mean normal stress. Such a yield function appears to be 
suitable for ice and rock. The uniaxial compressive yield 
strength is considered to be the basic random variable for the 
material. The spatial fluctuations in this yield strength field 
are described by a homogeneous, isotropic correlation func
tion. The three parameters in the yield function are determined 
in terms of the uniaxial compressive strength by deterministic 
scaling rules. 

'Presented at the Eleventh U.S. National Congress of Applied Mechanics, 
The University of Arizona, May 21-25, 1990. 

2Formerly at Shell Development Company, Houston, Texas, where this re- ' 
search was sponsored. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED 

MECHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Pro
fessor Leon M. Keer, The Technological Institute, Northwestern University, 
Evanston, IL 60208, and will be accepted until four months after final publication 
of the paper itself in the JOURNAL OF APPLIED MECHANICS. 

Manuscript received by the ASME Applied Mechanics Division, June 12, 
1990; final revision, Jan. 4,1991. Associate Technical Editor: R. M. McMeeking. 

Application of the stochastic upper-bound theorem is made 
to the plane problem of a truncated wedge under uniform 
contact pressure. This problem is of technical interest for the 
determination of local ice pressure on offshore arctic struc
tures. The problem was treated by Nordgren (1988) for a ho
mogeneous, elastic/perfectly plastic material with the three-
parameter quadratic yield function. In addition to exact rigid/ 
plastic plane solutions, upper bounds on the contact pressure 
were obtained for both plane problems and three-dimensional 
problems. The upper bounds for plane problems were found 
using constant velocity fields in triangular regions. For the 
stochastically inhomogeneous plane wedge, the straight line 
rigid-plastic and plastic-plastic boundaries are replaced by zig
zag boundaries. In a realization of the stochastic material, the 
zigzag directions are chosen to minimize the upper bound on 
the mean safety factor. The minimization is carried out both 
analytically and by numerical simulation with optimization by 
the method of dynamic programming. The analytical approach 
depends on new statistical results for the minimum of several 
correlated random variables with normal and lognormal dis
tributions. 

Numerical results for the truncated wedge problem are ob
tained for a special one-parameter correlation function be
lieved to be applicable to multiyear sea ice. In some cases the 
upper-bound mean safety factor is lower than the upper-bound 
safety factor for the corresponding homogeneous material with 
yield strength taken equal to the mean yield strength of the 
stochastic model. Thus, contact pressure may be reduced by 
consideration of stochastic inhomogeneity. 

The calculated upper bound on the mean safety factor de
creases with increasing length of the loaded boundary, which 
may be considered as indicating a "size effect." The actual 
mean safety factor also is expected to decrease with increasing 
loaded length. The calculation of a lower bound on the mean 
safety factor could confirm this conjecture. 

Some caution is in order in applying the present results to 
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ice and rocks since the proofs of the theorems of limit analysis 
depend on Drucker's postulate of a stable plastic material. In 
particular, this postulate is not satisfied for pressure-sensitive 
materials that yield by frictional sliding on microfissures. 

Further, in applications that involve the calculation of struc
tural loads from the stochastic bound theorems, the mean 
safety factor may not be indicative of the maximum load con
dition. Information on the variance of the safety factor also 
is required. In some cases, estimates of the variance can be 
calculated along with the bounds on the mean safety factor. 

Correlation Function for Yield Strength 

The stochastic inhomogeneity of yield strength will be char
acterized by a correlation function using a formulation given 
by Yaglom (1962). The correlation function relates the cor
relation coefficient for yield strength at two points to the dis
tance between the points. A one-parameter form for the 
correlation function will be introduced as a special case. Before 
considering the correlation function, we review the formulation 
of the three-parameter quadratic yield function and extend it 
to a stochastically inhomogeneous material. 

Yield Function. Following the notation of Nordgren (1988) 
and earlier work, the three-parameter yield function can be 
written as 

f=aJ2 + Ml + cI2
i-l, (1) 

where a, b, and c are strength parameters, and I{ and J2 are 
stress invariants given in terms of the principal stresses (at, a2, 
a3) as 

I[ = ai + a2 + a3, Ji = 7 [fai ~ cr2)
2 + (CT2 — ^ 3 ) 2 + (cr3 — ffi)2]. (2) 

o 

The parameters a, b, cm the yield function (1) are considered 
to be random fields in three dimensions. The statistical prop
erties of a, b, c are to be determined from experimental data 
on yield strength. The usual experiments are compression tests 
on circular cylindrical specimens with and without confining 
pressure. In an unconfined uniaxial compression test with yield 
stress q, the yield condition (f = 0) from (1) gives the relation 

-aq1-bq + cql=\. (3) 

Let q be thejnean value of q as obtained from experimental 
data. Let 5, b, c be the values of a, b, c that best fit the yield 
function (1) to the experimental data and satisfy (3) with q = 
q. Then, for any value of uniaxial yield stress q, we assume 
that the strength parameters a, b, c are related to q by the 
scaling rules 

a/a = c/c=(q/q)2, b/b = q/q, (4) 

which satisfy (3). The scaling rules (4) imply that yield curves 
in the \[T2, / rplane are geometrically similar. It is difficult to 
verify this by direct experiment; however, the scaling rules do 
appear to be consistent with experimental data on ice strength. 

Correlation Function. The uniaxial compressive yield 
strength q, is considered to be a random field in three dimen
sions with mean q and fluctuations £, i.e., 

q{x)=q + £(x), xs(Xux2,xi), (5) 

where *,• are rectangular Cartesian coordinates. For a sto
chastically isotropic and homogeneous medium, the correla
tion coefficient B(x, x') for the fluctuation field l-(x) at the 
two points x and x depends only on the distance r between 
the two points, i.e., 

B(x,x')=E[H(x)Hx')]=B(r). (6) 

Using results from Yaglom (1962), the correlation function 
can be written as 

where G(X) is a nondecreasing bounded function of X for X > 
0. 

As a useful special case, we consider the function 

GC\)=-B0e-Xh(\+l/h)/h, (8) 

for which (7) gives 

Here, B0 = ,8(0) is the variance of the strength fluctuations £ 
and the parameter h sets the length scale for the fluctuations. 
The special correlation function (9) can be fit to experimental 
strength data from specimens with known separation distance. 

Stochastic Collapse Theorems 
The first and second collapse theorems of limit analysis 

furnish lower and upper bounds on the collapse load for an 
elastic/perfectly plastic body under surface stress and body 
force. Here the collapse theorems will be extended to a sto
chastically inhomogeneous, elastic/perfectly plastic medium. 
The stochastic collapse theorems give lower and upper bounds 
on the mean safety factor, i.e., the factor by which a given 
set of loads is multiplied to cause collapse. Knowledge of the 
statistical distribution and spatial correlation of the yield 
strength parameters is required in order to apply the stochastic 
collapse theorems. 

We will follow Koiter (1960) and state the collapse theorems 
of limit analysis in terms of the safety factor. Consider a body 
loaded by body force vector X, and surface stress vector a* 
on a portion Sa of the surface S. The displacement vector u-, 
is prescribed to be zero on the remainder of the surface S„. 
The safety factor for this load system is defined as the positive 
multiplier n such that no, and nX-, constitute a limit load system, 
i.e., a load system for which the body cannot support a further 
increase in load. 

Stochastic Lower-Bound Theorem. The first (lower-bound) 
theorem of limit analysis states that a body will not collapse 
if an equilibrium stress field nLOij can be found for the loads 
nLo* and nLX-, such that the yield function satisfies f(nLOjj) < 
0 throughout the body. Therefore, nL is a lower bound on the 
safety factor n. 

The first collapse theorem is proved indirectly by Koiter 
(1960) using Drucker's (1951) stability postulate. The proof 
extends to a deterministic inhomogeneous material upon con
sideration that parameters in the yield function depend on 
position in the inhomogeneous body. To formulate the theorem 
mathematically, let n* be the solution of 

/(«**</) = 0 (10) 

for a given stress tensor o-y. Thus, n* depends implicitly on the 
yield parameters and therefore is a function of position in the 
inhomogeneous body. If the stress field o^ satisfies the equa
tions of equilibrium and stress boundary conditions, then, by 
the first collapse theorem, a lower bound on n may be written 
as 

nL = mm{n*(x)}. (11) 
X 

Furthermore, one may adjust the stress field <ry so as to max
imize nL in (11), subject to (10), the equilibrium equations, 
and the stress boundary conditions. 

For a stochastically inhomogeneous material, rii from (11) 
is a random variable that depends on the stochastic properties 
of the yield parameters through (10). Then, the mean value of 
nL is given by 

7Fi =2?[min {«*(*)}], (12) 
X 
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where the mean E[...] is taken with respect to the random 
strength parameters in the yield function which enter through 
the solution of (10) for n*. Since nL is a lower bound on n for 
each realization of the stochastically inhomogeneous body, it 
follows that TxL is a lower bound on the mean safety factor In. 

For the three-parameter yield function (1), by (10) and the 
scaling rules (4), it follows that 

n*(x) = [q(x)/q]{-bh + [(b2 

\_ 

+ 4c)I2 + 4aJ2]
2}/[2(aJ2 + cI1)], 

which may be useful in applications. 

(13) 

Stochastic Upper-Bound Theorem. The second (upper-
bound) theorem of limit analysis can be stated in a number of 
ways. Here, we follow Koiter (1960) and state that an upper 
bound «;/ on the safety factor n is determined by the equation 

nv 
aiv°dS+ \ XrfdV = f F(e°j)dV 

+ j Fs{6ifi)dS, (14) 

where v° is a kinematically admissible velocity field such that 
"° - 0 o n S „ and the strain rate tensor is given by 

e& = fdM/). (15) 

In (14), F i s the energy dissipation rate per unit volume and 
Fs is the energy dissipation rate per unit area of a surface SD 

across which yf has a jump discontinuity 8v°. Further, the left-
hand side of (14) must be positive and there may be additional 
restrictions on v° for certain yield functions, e.g., e°kk = 0 for 
the Mises yield function. Specific expressions for F and Fs are 
available for the three-parameter yield function (1) as will be 
discussed in what follows. The upper-bound theorem is proved 
indirectly by Koiter (1960) using Drucker's (1951) stability 
postulate. The proof can be seen to hold for a deterministic 
inhomogeneous material. In this case, the material strength 
parameters in the energy dissipation functions F and Fs vary 
with position in the body. 

Next, the upper-bound theorem will be extended to a sto
chastically inhomogeneous medium in which the yield strength 
parameters are random fields in three dimensions. For this 
material, the mean value of nUt denoted by Hy, is determined 
from (14) as 

atvfdS+ \ X,v°dV =E \ F{e°ij)dV 
«J 1/ O 1/ 

+ E Fs(&v°)dS 
$D 

(16) 

where the mean E[...] is taken with respect to the random 
fields for the yield strength parameters and the integrals on 
the right-hand side are considered as the limits of appropriate 
sums. The relation between q and the energy dissipation rates 
F and Fs must be established for a particular yield function 
as will be considered next for the three-parameter quadratic 
yield function. Since nu is an upper bound on n for all real
izations of the random strength parameter fields, it follows ' 
that «(y is an upper bound on the mean safety factor n. 

For the three-parameter yield function (1), Nordgren (1988) 
verified earlier results that, under certain mild restrictions, the 
energy dissipation rates are given by 

F= — \{b2 + 4c)2 

6c I 
18 - eyeu+ (ekk) -bek (17) 

Fs = ~]{bl + 4c)2 6v„ + 3- (3Svj + 4Sv2„) 
a 

- bSv„ (18) 

(19) 

where e,j is the deviatoric strain tensor defined as 

1 . 
eu~eU~y bifikk> 

and Su„ and 8v, are the magnitudes of the velocity discontinuity 
normal_and tangential to the surface of discontinuity SD. 

Let F and Fs be the energy dissipation functions (17) and 
(18) with a, b, c replaced by a, b, c. Then, by (17), (18), and 
(4), F and Fs scale according to 

F/F=Fs/Fs = q/q. (20) 

Therefore, (16) can be written as 

»u \ oiv°dS+ \ XrfdV = E 

i 
q(x)F(e°j)dV 

+ \ q(x)Fs(dv»)dS 
SD 

/q, (21) 

where now the mean E[...} is taken with respect to the random 
field q(x). In applications, minimization of n„is achieved by 
selecting the velocity field u° as will be illustrated next in an 
example. 

Contact Pressure on a Truncated Plane Wedge 
Nordgren (1988) obtained upper bounds on the average con

tact pressure acting on a truncated wedge of homogeneous 
elastic/perfectly plastic material obeying the three-parameter 
yield function (1). For plane problems, the upper bound com
pared favorably with an exact solution for a rigid/perfectly 
plastic material obtained by the method of characteristics. Both 
plane stress and plane strain were considered as well as a three-
dimensional contact problem. The assumed velocity field for 
application of the upper-bound theorem to the plane problem 
consisted of two triangular regions of constant velocity, ABD 
and BCD, as shown in Fig. 1. The magnitude of the velocities 
and position of the rigid-plastic boundaries AB and BC were 
obtained by an optimization calculation for each particular 
case. These same optimal values are assumed to apply here as 
a base case for application of the stochastic upper-bound theo
rem to the inhomogeneous wedge. 

Zigzag Boundary. In order to take advantage of the in-
homogeneity in yield strength, the straight-line segments of 
the rigid-plastic boundary are replaced by zigzag lines, as shown 
in Fig. 1. On each subsegment of the boundary, the branch 
of the zigzag that minimizes the energy dissipation is to be 
chosen for each realization of the stochastic material. For 
example, in Fig. 1 one may replace the subsegment AG by 
either AEG or AFG. We will calculate the effect of this optimal 
replacement strategy on the upper bound on the mean contact 
pressure. The alternate system of zigzag paths in the inset of 
Fig. 1 will be considered later. 

The mean value of the minimum energy dissipation is re
quired in the stochastic upper-bound theorem (21). The integral 
over SD in (21) can be expressed as the sum of integrals over 
subsegments_of the zigzag boundaries of the plastic regions. 
Further, the Fs term is constant and can be removed from each 
integral leaving the q(x) term. The integral of q(x) represents 
the average yield strength on the zigzag subsegment. Either 
zigzag branch can be chosen so as to minimize the mean of 
tjais q integral for each subsegment. Since the average yield 
strength for the two zigzag branches are correlated, we have 
the problem of finding the mean of the minimum of two 
correlated random variables. Before discussing this minimi
zation problem, we consider the calculation of the correlation 
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Fig. 1 Velocity field for upper-bound on contact stress in the plane 
contact problem. Alternate zigzag paths for rigid-plastic boundary. 
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Fig. 2 Correlation coefficient of average strength on two lines of length 
R with a common end point versus separation angle /3 and R/h for the 
special correlation function (9) 

coefficient for average yield strength on the two branching 
zigzags. 

This correlation coefficient can be obtained for the special 
correlation function (9) from results developed in the Appen
dix. These results for the correlation coefficient of a random 
field along two line segments of length R with separation angle 
/3 are shown in Fig. 2. For the zigzags AEG, AFG, we have 
R ~ I for ]3 « 1, where 2/ is the length of AG. The result is 
a good approximation since the correlation on AF and AE 
dominates over the neglected strength correlation on AF and 
FG and EG for /3 « 1. Further, the variance in the strength 
along AFG and AEG is given approximately by Fig. 3 with R 
« 2/ for (8 « 1. Results shown in Fig. 3 also are developed 
in the Appendix. 

Results for the minimum of several uncorrelated, normal 
random variables are given by Gumbel (1958). The minimi
zation problem for correlated random variables is solved in 
the Appendix for both the normal and lognormal distributions. 
From the results obtained there, Fig. 4 gives the mean of the 
minimum of 2, 3, 4, and 5 correlated normal variates with the 
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Fig. 3 Ratio of standard deviation of average strength on a line of length 
R to standard deviation of strength versus R/h for the special correlation 
function (9) 

same distribution. The mean of the minimum is normalized 
on the standard deviation of a single variate. The correlation 
coefficient is assumed to be identical for all pairs of variates. 
Figures 5 and 6 give the mean of the minimum of two and 
three correlated lognormal variates, respectively. Here the mean 
of the minimum is normalized on the mean of a single variate. 

In view of the form of the right-hand side of (21), the effect 
of taking the mean minimum strength on the zigzag branches 
for each subsegment of the rigid-plastic boundary is to reduce 
the upper bound on the mean safety factor, obtained using 
mean strength properties in Nordgren's (1988) deterministic 
analysis, by the branch factor which is defined as the ratio of 
the mean of the minimum strength to the mean strength as 
obtained from Fig. 4 or 5. This assumes that the subsegments 
for all three segments (AB, BC, and BD in Fig. 1) are the same 
length which can be arranged approximately for large contact 
areas which have several subsegments for each main segment. 
To improve the upper bound, the minimum energy dissipation 
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Fig. 4 Mean of the minimum of n correlated normal variates with mean 
zero and the same standard deviation 

0.2 0.4 0.6 0.8 

CORRELATION COEFFICIENT 

Fig. 6 Mean of the minimum of three correlated lognormal variates with 
the same mean and coefficient of variation CV 
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Fig. 7 Energy dissipation factor for zigzag rigid-plastic boundary versus 
separation angle ji for various velocity ratios 

rate on each segment of the rigid-plastic boundary could be 
calculated separately. 

In calculating the energy dissipation on the zigzags, account 
must be taken of the change in velocity components due to 
the inclination of the zigzags. On the rigid-plastic boundary 
segment AB in Fig. 1, the normal and tangential components 
of velocity discontinuity are v'„ and v[, respectively. On the 
zigzag boundary segment AF, which is inclined to A G at an 
angle 1/2/3, the velocity discontinuity components are 

{&v„}AF= t^cos - /3 + 0,'sin - /3, 

(5t;,)/4F=-y„'sin-|3 + i;,'cos-/3. (22) 

On the zigzag boundary segment FG, the velocity discontinuity 
components are given by (22) with 1/2/3 replaced by - 1/2/3. 
The energy dissipation rate for segments AF and FG then can 
be calculated from (18) and compared with the rate for AG. 
The increased length of AFG over AG is accounted for in the 
comparison. The ratio of the energy dissipation rate on AFG 
to that on AG, called the energy dissipation factor, as cal
culated from (18), is shown in Fig. 7 for various ratios of 

tangential velocity tojiormal velocity (v,/v„) and values of the 
yield parameters a, b, c typical for ice.3 The results are not 
very sensitive to the yield parameters. The cancellation of first-
order terms in /3 accounts for the quadratic variation of the 
energy dissipation factor at low values of /3. In the cases con
sidered by Nordgren (1988), values of v,/v„ are typically in the 
range 3 to 25. Thus, the maximum values of the energy dis
sipation factor (at v,/v„ — 10) can be used in general calcu
lations of an upper bound. The energy dissipation factor for 
the zigzag boundary segment AFG also applies to the zigzag 
boundary segment AEG in Fig. 1. For the deterministic ma
terial, use of the zigzag boundaries increases the upper bound 
on the collapse pressure in proportion to the energy dissipation 
factor. 

In applying the foregoing results, the separation angle /3 and 
the length / of the zigzags in Fig. 1 should be selected to 
minimize the upper bound, i.e., to minimize the product of 
the energy dissipation factor and the branch factor. A low 

3In the notation of Nordgren (1988), the yield parameters are determined from 
Q/Qo = 1.5 and P,/Q0 = 2, where Q0 = q and Q,, P, are the maximum 
confined strength and the corresponding confining pressure in a conventional 
triaxial test. 
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Fig. 9 Reduction factor for upper bound on mean contact pressure 
versus number of subsegments on each segment of the rigid-plastic 
boundary for various values of the correlation coefficient p with ft = 18 
deg and lognormal distribution for strength with coefficient of variation 
CV = 0.3 for each branch 

value of |8 is desirable to reduce the dissipation factor (Fig. 
7), whereas a high value of /3 reduces the correlation coefficient 
(Fig. 2) which reduces the branch factor (Figs. 4 and 5). The 
optimal value of (5 usually lies in the range 10 deg to 20 deg. 
Similarly, low values of / reduce the standard deviation (Fig. 
3 with R ~ 21), whereas high values of / reduce the correlation 
coefficient (Fig. 2 with /? = /). The reduction of both the 
standard deviation and the correlation coefficient reduce the 
mean of the minimum (Figs. 4 and 5). The optimal value of 
I/h usually lies in the range 5 to 15. 

As seen from Fig. 5, a coefficient of variation (standard 
deviation -s- mean) in uniaxial yield strength of approximately 
0.3 or more is required to obtain a reduction in the upper 
bound Hu when a energy dissipation factor of 1.1 (Fig. 7) is 
considered. 

In addition to the two zigzag branches for each subsegment, 
the original subsegment itself can be included and the minimum 
of the three branches taken. However, the correlation coef
ficient is higher for the case of three branches, since the angle 
between two of the pairs of lines now is fi/2 rather than /?. 
Thus, calculations with Figs. 4 or 6 show that the upper bound 
Tiu is not lowered significantly by this three-branch approach. 

Alternate Boundary. In a further attempt to lower the up
per bound on the mean safety factor, we consider a more 
complicated set of zigzag boundaries with multiple branches 
as shown in the inset to Fig. 1 for the segment AB. The segments 
BC and BD have a similar set of multiple branches. We seek 
the zigzag boundary path from A to B which minimizes the 
energy dissipation with respect to all possible paths. The path 
may branch at each of the nodal points indicated in the inset, 
e.g., at point 6 the path may branch to points 1, 2, or 3. On 
the inclined branches of the path, the effect of the energy 
dissipation factor (Fig. 7) must be accounted for. Also, the 
separation angle /3 and the subsegment length / are optimized 
as before. 

The mean of the minimum energy dissipation on the multiple 
branches has been found by a Monte Carlo simulation cal
culation. For each realization of the stochastic material, cor
related yield strengths are generated for all possible branches 
using methods developed in the Appendix. The optimal path 
and the minimum energy dissipation are found by the method 

of dynamic programming as given by Bellman and Dreyfus 
(1962). This method substantially reduces the search effort 
required to find the minimizing path. 

Results of the simulation are presented in Figs. 8 and 9, 
where the reduction factor is defined as the ratio of the mean 
minimum energy dissipation over the multiple branches to the 
mean energy dissipation over the straight segment. In both 
figures, the energy dissipation factor is taken as 1.1. In Fig. 
8, the correlation coefficient, p, for strength on the subseg
ments is held at the value 0.65, while the coefficient of variation 
for strength on the subsegments, CV, is varied as a parameter. 
Values of p above 0.65 cannot be simulated by the method of 
the Appendix for large values of CV. In Fig. 9, CKis held at 
the value 0.3, while p is varied as a parameter. The reduction 
factor for energy dissipation from the multiply branched rigid-
plastic boundary again is an approximation to the mean upper 
bound Hu for cases of several subsegments per segment. Now 
the reduction factor decreases with increasing number of sub-
segments. Thus, the model indicates a "size effect" in that the 
upper bound on mean contact pressure decreases with increas
ing contact area (for constant subsegment length /). 

In obtaining the numerical results by simulation, it was ob
served that the variance of the calculated safety factor also 
decreases with increasing contact area. Although this is only 
an estimate of the actual variance in the safety factor, the 
result may be of interest in problems where maximum loading 
is important. For sufficiently large contact areas, the mean 
safety factor may give an adequate indication of the maximum 
load. 

Strictly speaking, the foregoing results are valid only for the 
state of plane stress in a thin plate where variations in strength 
across the plate thickness are negligible. The results also may 
be a useful approximation for the state of plane strain, if the 
body is considered to be composed of a stack of plates. Each 
plate is analyzed independently by the foregoing stochastic 
approach. The neglected interaction between the plates is ex
pected to be small if the plate thickness is taken to be on the 
order of the correlation length parameter h in (9). For a more 
accurate treatment of plane strain as well as three-dimensional 
problems, it appears necessary to generalize the concept of 
multiple alternate branches in applying the extended upper-
bound theorem. 
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Conclusion 

The collapse theorems of limit analysis have been extended 
to a stochastically inhomogeneous material. For the problem 
of contact pressure on a truncated wedge, the stochastic upper-
bound theorem leads to a reduction in the upper bound on 
mean collapse pressure from the deterministic treatment using 
mean yield strength. Numerical results show that the upper 
bound on mean collapse pressure decreases as the contact area 
increases, which indicates a "size effect." 

Application of the stochastic lower-bound theorem to the 
contact problem remains to be explored. Other applications 
of stochastic limit analysis appear to be possible. 

References 
Bellman, R. E., and Dreyfus, S. E., 1962, Applied Dynamic Programming, 

Princeton University Press, Princeton, New Jersey. 
Drucker, D. C , 1951, "A More Fundamental Approach to Plastic Stress-

Strain Relations," Proc. 1st U.S. Natl. Cong. Appl. Mech., ASME, New York, 
pp. 487-491. 

Gumbel, E. J., 1958, Statistics of Extremes, Columbia University Press, New 
York. 

Koiter, W. T., 1960, "General Theorems for Elastic-Piastic Solids," Progress 
in Solid Mechanics, Vol. 1, I. N. Sneddon and R. Hill, eds., North-Holland, 
Amsterdam, pp. 167-221. 

Nordgren, R. P., 1988, "Plastic Analysis of Ice Contact Problems," ASME 
JOURNAL OF APPLIED MECHANICS, Vol. 55, pp. 73-80. 

Parzen, E., 1967, Modern Publishing Theory and Its Applications, John Wiley 
and Sons, New York. 

Yaglom, A. M., 1962, An Introduction to the Theory of Stationary Random 
Functions, translated and edited by R. A. Silverman, Prentice-Hall, Englewood 
Cliffs, New Jersey. 

A P P E N D I X 

For application of the stochastic upper-bound theorem to 
the plane problem of contact pressure on a truncated wedge, 
certain mathematical results are required. These results will be 
derived here. For background on the deviations, see Gumbel 
(1958), Parzen (1967), and Yaglom (1962). 

Average Strength on Line Segments. Let q(R) be the av
erage uniaxial compressive strength (or any other isotropic, 
homogeneous random field) over a line segment of length R 
between points P0 and P\. Using (5) we have 

1 
Q(R)=l \ ' [q + Hs)]ds = q+hm - ^ HmR/n), (Al) 

where s is the arc length along Pr/V The mean value of qR on 
PQPI is simply the mean strength q. Thus, using (6) and (Al), 
the variance is given by 

OR=E[(qR-q)2]=-^-2 \ \ B(s-s')dsds'. (A2) 
R J 0 J0 

By a similar limit process, the covariance in the average strength 
over the lines PQPI and PQP2 with lengths Rx and R2 and sep
aration angle /3 is found to be 

\,2 = E 

1 

R^Ri 

C«i [• -

•Jo -Jo 
B(rx2)dsxds2, (A3) 

where 

^12 = [•? ? + s ! - 2siS2cos/3]2. 

For the special correlation function (9) with Rx = R2 = R, 
the variance (A2) and covariance (A3) reduce to 

o2
R= B0{h/R){2 arctan(fl///) 

\ u = B0(h/RY \n[\ + (R/h)\\ 
Jo 

- sin 26» cos /3)/cos2 0]/[l - sin 20 cos 0\d6. (A5) 
The integral in (A5) can be evaluated by numerical quadrature. 
Results for the standard deviation o> and the correlation coef
ficient, pR = \\2/O

2R, obtained from (A4) and (A5) are shown 
in Figs. 3 and 2, respectively. 

Minimum of Correlated Random Variables. The two cor
related random variables yx, y2 can be generated from uncor
rected random variables xx, x2 by the formulas 

yx=xx + ax2, y2 = x2 + axx, (A6) 

where a is a constant. Similar formulas apply for three or more 
correlated variables. If xu x2 have mean m and variance a2, 
then yu y2 have mean, variance, and covariance 

y = E\y,] = (l + a)m, 

ff^Var[y,] = (l+a;2)ff2, 

A = CovLy,,.v2] = 2cvo-2. 

Then the correlation coefficient is 

py = r\/a2y = 2a/(l+a2), 

which can be solved for a as 

(A7) 

(A8) 

a = V[l+Vl-p5l- (A9) 
We define the random variable z as 

z = m\n(yx,y2). (A 10) 

The cumulative distribution function for z is given by 

F(z) - I I H\y2- yx\H[z- yx]g(yx,y2)dyxdy2, (All) 

where H [...] is the unit step function and g(yx, y2) is the 
joint probability density function (p.d.f.) for^! &ndy2. Once 
F(z) is evaluated, the p.d.f. for z follows by differentiation. 
The formulas can be generalized to n correlated y,- variates 
with minimum z„. 

Normal Distribution. If xx, x2 are independent normal var
iates, then y\,y2 are (correlated) normal variates, as seen from 
the definition (A6) and their joint p.d.f. is 

g(yi,y2) = 
1 

2iroy-\/ 1 - p\ 
exp 

(yi-y)2-2py(yl-y)(y2-y) + (y2~y)2) 

2a2(l-p2.) J 
(A12) 

In this case, the p.d.f. for the variate z is determined from 
(All) as 

/U)-f 
dz 

exp 
2ir(jy (̂  2<77 

<*-?> >erfc| / f l f i ^ h (A13) 
L+Py \l2cTy ) 

From/Xz), the mean and variance of z are found to be 

IT, O-2 = CT2[1 + ( 1 - P , ) / 7 T ] . (A14) 

-(h/R)ln[l+(R/hy]} (A4) 

Z=y~(Jy\l\ —Py/ 

The dependence of the mean z on the correlation coefficient 
Py is shown in Fig. 4 as the case n = 2. The standard deviation 
az depends weakly on py, varying from 1.148 to 1.0 as py varies 
from 0 to 1. 

In a similar manner, we have considered the generalized case 
of n correlated normal random variables Oi, y2 y„) all 
with the same mean y, variance a2, and pairwise correlation 
coefficients py. The minimum of {yu y2, ..., y„) is denoted by 
z„. Closed formulas for the mean z„ have been obtained for n 
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= 3, 4, 5 and these results also are shown in Fig. 4. For the 
case of n uncorrelated variables (py = 0), our results agree 
with Gumbel (1958). 

Lognormal Distribution. For the lognormal distribution, a 
slightly different approach is required. Let ut, u2 be the random 
variables defined by 

w^expj .y , ) , u2 = exp{y2], (A15) 

where yu y2 are the correlated normal variates defined by (A6) 
in which x\, x2 again are independent normal variates with 
mean m and variance a2. Thus, ux and u2 are correlated log-
normal variates. Expressions for the mean, variance, and co-
variances of Hi, u2 can be derived with the aid of the moment 
generating function for x\, x2, namely 

t(t) =exp \mt + -a2i2l= \ es'g(x)dx, (A16) 

where g(x) is the normal p.d.f. for xu x2. Then, the mean 
and variance of uu u2 are given by 

M = exp](l +a)m + - (\+a2)a2 , 

ff2 = exp(2( l+a)w + 2 ( l + a V j - w 2 . (A17) 

The correlation coefficient for U\, u2 is found to be 

p„ = Cov[«i,w2]/o-?,= [exp{2aff2j - \]u2/o2,. (A18) 

It follows from the preceding equations that 

>< = l n w - - l n [ l + (a„/M)2], cr; = ln[l+(a„/«)2] , 

py = \n[l +p„(ff,/I7)2]/ln[l + (a„/u)2], (A19) 

which serve to determine y, ay, and py for given M, a„, and p„. 
Then, m, a, and a can be determined from (A7) and (A9). For 
the lognormal case, the p.d.f. for the variate z is determined 
from (All) as 

dz 

1 

27rz<r, 
exp 

(Inz-y)2^! jl-Py(lnz-y) 

1 + Py \flay \ 
(A20) 

The mean and variance of z are found to be given by 

z _ \1 
= = er fc , 2 
u 

In 
l+(d„/uf 

l+PM(ff«/«) 

o2
z = {al + u2)erfc In 

l+(<Ju/u)2 

i+p„(du/uy 
(A21) 

Figure 5 shows the dependence of the mean ratio z/u on the 
correlation coefficient pu for various values of the coefficient 
of variation au/u. 

Further, we have considered the related case of three cor
related lognormal random variables (uu u2, «3) with the same 
mean u and variance a2„ and identical pairwise correlation 
coefficients pu. The minimum of (ii\, u2, u3) is denoted by z3. 
An expression for the mean z3 has been obtained, and results 
are shown in Fig. 6 which is similar to Fig. 5. 
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Numerical Analysis of Plane-Strain 
Tension Test for Rate-Dependent 
Solids 
The plane-strain tension test is analyzed numerically for a material with strain and 
strain-rate hardening characteristics. The effect of the prescribed rate of straining 
is investigated for an additive logarithmic description of the material strain-rate 
sensitivity. The dependency to the imposed strain rate so introduced is shown to 
have a significant effect on several features of the load-elongation curve such as the 
attainment of the load maximum, the onset of localization, and the overall engi
neering strain. 

1 Introduction 
The plastic instability in plane-strain tension of a rate-de

pendent material is similar to the axisymmetric case where an 
almost homogeneous deformation state is followed by the for
mation of a diffuse neck due some sort of material or geometric 
inhomogeneity. Compared to the rate-independent behavior, 
differences in the deformation history arise mainly due to the 
stabilizing influence of the material strain-rate sensitivity, man
ifested by a larger overall engineering strain due to a retarded 
neck growth. The increase in uniform elongation for a rate-
dependent solid is of particular interest in general, since the 
behavior of the metals is inherently rate-dependent at high 
speeds of deformation. One area of particular interest is the 
sheet metal forming processes, for which the search for im
proved predictability continues as commercial operations in
volve increasingly higher speeds. 

In this study, a rectangular elastic-viscoplastic specimen un
der plane-strain loading conditions is analyzed where the iso
tropic hardening flow theory relations are generalized for rate-
dependent behavior. Like in the axisymmetric case reported 
in Tugcu (1989), an additive logarithmic representation is cho
sen to describe the dependence of the viscoplastic strain rate, 
on the state variables in the current state. This in turn brings 
in the prescribed rate of straining as an important factor af
fecting the deformation history of the specimen, contrary to 
the separable power law such as employed in Becker and 
Needleman (1986). The traditionally employed limit strain def
inition for forming limit curves of strain-rate-dependent solids 
is also questioned in favor of a unified definition with the rate-
independent case on physical grounds. 

The numerical results were generated using a finite element 
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method for the entire deformation history of a specimen. An 
initial thickness inhomogeneity is prescribed to initiate the 
localization process corresponding to a zero angle of neck 
orientation, which also represents the diffuse neck instability 
mode for the whole range of the biaxial tensile strain domain 
in sheet-metal-forming limit curves. The final mode of failure 
in plane-strain tension, however, often involves shear band 
formation which cannot be predicted with the analysis given 
here (Needleman and Tvergaard, 1984; Becker and Needleman, 
1986). Overall elongation levels to fracture are nevertheless 
compared qualitatively on the basis of neck development. 

2 Analysis 

The field equations for the finitely deformed elastic-visco
plastic solid are based on a Langrangian formulation, where 
the initial undeformed configuration with volume V and sur
face 5 is taken as a reference. In this reference, state material 
points are identified by convected coordinates x'. The position 
vector of a material point in the initial and current configu
rations are denoted by r(x') and R(x'), respectively. The base 
vectors gk and G, in the reference and current configurations 
are given by 

&~ax" '"ay" (1) 

The metric tensors in the reference and current configurations 
are gy = g, • g; and G,y = G, • G,, respectively. The displace
ment vector from the undeformed configuration is denoted by 
u. 

The nominal traction vector F, defined as the load per unit 
area dS of the undeformed configuration, is obtained from 

(2) Fi = ni(T
iJ + Tiku{k)=nkq

ii 

where T'J and qlj denote the contravariant components, re
spectively, of the symmetric Kirchhoff stress-tensor defined 
with respect to the deformed base vectors G„ and the non-
symmetric nominal stress tensor defined with respect to the 
undeformed base vectors g,-. In (2), n = n,g' represents the area 
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and orientation of the material element in the reference con
figuration and a comma denotes covariant differentiation with 
respect to the undeformed metric. The true or Cauchy stress 
tensor, defined with respect to the deformed metric G„ in terms 
of the current area and orientation of a material element, is 
related to the Kirchhoff stress tensor from 

1/2 

T (3) 

where g and G represent the determinants of gy and Gy, re
spectively. 

We now assume that an approximate equilibrium state is 
known at time /, satisfying the virtual work principle 

qu8iijjdV= \ T°'driudV= \ F'biijdS (4) 

where SF is part of the surface on which the nominal traction 
vector is prescribed and the Lagrangian strain tensor com
ponents rjij are given from 

1 
% = (Ujj+Ujj+UjUkj). (5) 

Employing a linear incremental approximation for the field 
quantities, the virtual work principle (4) can be written at time 
t + At as follows: 

(6) 

At q'J8UjjdV=At (T^driy + T^u'^Ui^dV 

- J Fibu,dS- rh^jdV- \ F'ditidS 

where a superposed dot denotes partial differentiation with 
respect to time. The bracketed terms on the right-hand side of 
(6) is an equilibrium correction which vanishes if the solution 
at time t corresponds to exact equilibrium. 

The strain-rate sensitivity for the quasi-static deformations 
analyzed is modeled using an elastic-viscoplastic von Mises 
solid. The total strain rate is written as the sum of the elastic 
and viscoplastic parts 

Vu=yfj+iu- (7) 
The rate constitutive relationship for the elastic part is taken 
as 

vEu-
1_ 

' E 
\ + v 

(GikGji+GjkGji) • "GijGkl (8) 

where E is Young's modulus, v denotes Poisson's ratio and a 
superposed * denotes the Jaumann rate. The plastic component 
in (7) is written as in the rate-independent response 

(9) ^ 
3'ej 

Sij 

where the stress deviator components Sy are obtained from 

SiJ=Ty-^GUGklT
k'. (10) 

In (9), re denotes the effective Kirchhoff stress given as 

r] = \ S i / . (11) 

The viscoplastic behavior is introduced in (9) through the ef
fective plastic strain rate eP. As opposed to the rate-inde
pendent response where ef is given in terms of the incremental 
quantities, the strain-rate dependent behavior is modeled as
suming eP is determined from the current stress and strain 
values as 

eP = H(eP, Oe). (12) 

In (12), ee is the effective viscoplastic strain, obtained from 
an integration of e P with respect to time and ae (= \fg/G rf) 
is the effective true stress. Further, the uniaxial behavior of 
most metals at room temperature suggests that the strain-rate 
hardening can be expressed in the following additive form: 

(£e+ec)
N+m\n[\+y 

for a-<ay 

fo r <T>CTv 
(13) 

where N is a strain-hardening parameter, m is the strain-rate 
sensitivity index, eR is a reference strain rate, and K is a. ma
terial constant. The subscript Y is employed to denote quan
tities associated with initial yield and the constant ec is 
determined from the continuity of stress at initial yield. The 
rate-independent plastic response with power-law strain hard
ening is resulted from (13) if m = 0 or eP = 0. The additive 
form of (13) indicates that for two given eP values, the flow 
stress differs by the same amount at any level of deformation. 
Separable forms of uniaxial behavior are also commonly em
ployed, which predict the same ratio of flow stress for two 
given eP values at any strain level. As will be discussed later, 
when the stress state becomes nonhomogeneous, the predic
tions resulting from these alternative forms can differ sub
stantially. At high rates of strain, the strain-softening effect 
of deformation induced heating in (13) might not be negligible, 
which is not accounted for in this study. 

The finite element analysis developed here is based on the 
variational principle (6). For this we use the relation between 
the convected and Jaumann rates to obtain 

L^nu-L^ni, Ukl-P 

where L" are the elastic moduli and 

"u« _ : Lm - - ( G ' V + G'V* + G ' V + G'V*). 
2 

(14) 

(15) 

When (14) is substituted in (6), since T\P- are not dependent on 
the velocity field due to the viscoplastic representation (12), 
the terms involving rjy become part of the nodal traction-rate 
vector. 

3 Problem Formulation 
For our plane-strain formulation we consider a rectangular 

specimen with length 2L0 and average thickness 2/i0 in its initial 
undeformed state. In this reference configuration, a Cartesian 
coordinate system with x! = x, y, z is chosen. The origin is 
placed at the center of the specimen and the x-z plane is taken 
as the plane of deformation. The x and z-axes are chosen to 
be in the thickness and length directions, respectively. An initial 
geometric inhomogeneity is introduced to trigger the neck de
velopment. For this, the initital thickness of the specimen is 
assumed to vary along z, given by (h0 - Aho), where A/i0 is 
prescribed as 

Ah0 = t;h0cos 
•KZ 

(16) 

with J > 0. The lateral surfaces x = (ho - AA0) are taken to 
be traction-free. Symmetry about the mid-planes x = 0, z = 
0 is assumed. The displacement component along .y-axis is uv 

= 0. The boundary conditions for the quadrant considered in 
the numerical computations are 

Fx = 0,uz = 0 at z = 0 

Fz = 0, iix = 0 a t x = 0 (17) 

FX = Q, iiz=U=ea(U+L0) a t z = L0 

where ea denotes the average axial logarithmic strain rate im
posed at z = LQ and.the total displacement (7 of the end section 
is obtained from \Udt. 
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The finite element analysis performed here is based on con
stant strain triangles. The grid employs quadrilateral elements 
made up of four triangular elements formed by the diagonals 
of the quadrilaterals. The ability of the crossed triangles to 
handle the nearly isochoric deformations resulting from the 
incompressibility of the plastic flow is discussed in Nagtegaal 
et al. (1974). The integrals in (6) are evaluated using a central 
one-point integration scheme for the constant strain triangular 
elements employed. 

4 Results 

Since possible implications of the results to the sheet-metal 
formability analyses will be attempted, we start this section by 
giving a brief outline of the general features of the forming 
limit curve studies. Limit strain analysis for various loading 
combinations in the plane of a sheet metal requires consid
eration of a range varying from uniaxial tension to equibiaxial 
tension. In terms of the logarithmic strains, defined along the 
principal axes of the specimen in the plane, this range corre
sponds to a variation of these strain ratios between - 0 . 5 (un
iaxial tension) and 1 (equibiaxial tension). Since bifurcation 
studies for flow theory analysis proved inadequate in the tensile 
biaxial range, an alternative approach to finding reasonable 
critical strains with this theory was presented by Marciniak 
and Kuczynski (1967), where necking instability was assumed 
to be triggered by the growth of an initial geometric (or ma
terial) nonuniformity in the form of a band. Successful pre
dictions employing different aspects of flow rules, such as yield 
surface vertices, non-normality of plastic flow, void growth, 
etc., was later followed by Storen and Rice (1975), Rudnicki 
and Rice (1975), Hutchinson and Neale (1978a), Needleman 
and Rice (1978), and Hutchinson and Tvergaard (1981). Limit 
strain predictions with the classical flow theory of plasticity, 
however, still remain at an unsatisfactory stage, since studies 
following Marciniak and Kuczynski (1967) to date have not 
yet been successful in matching the magnitude of the presumed 
geometric defects producing agreement with experiments to 
those measured in real specimens. 

The inclusion of the strain-rate effects to the studies of sheet-
metal formability were initiated by Marciniak et al. (1973), 
similar to the rate-independent case, using an approximate 
method to determine the incremental deformation growth in 
an initial geometric inhomogeneity in terms of the prescribed 
uniform section deformations. Like in the rate-independent 
analysis (Marciniak and Kuczynski, 1967), their analysis for 
the rate-dependent behavior also predicts an unbounded de
formation growth in the groove once the plastic instability sets 
in. However, unlike the rate-independent case where a definite 
limit strain can be defined, the uniform section strains for the 
rate-dependent analysis grow asymptotically to a maximum. 
This asymptotic value of the uniform section strain is defined 
as the limit strain with some bounds imposed from fracture 
considerations of the material in the groove. Similar studies 
for rate-sensitive behavior were since undertaken among others 
by Hutchinson and Neale (1978b) and Needleman and Tver
gaard (1984) to investigate other related aspects of sheet-metal 
forming where the same limit strain definition was adopted. 

Studies of the forming limit curves covering the whole range 
of biaxial loading are in general performed, assuming the plane-
stress condition, whether in full finite element solutions or ih 
the long-wavelength analyses, in most of the studies cited above. 
The particular plane-strain analysis performed here is an exact 
three-dimensional solution which computationally reduces to 
two dimensions. 

A rectangular specimen with an initial length-to-thickness 
ratio of (L0/h0) = 4 is considered. The finite element mesh is 
generated using eight equidistant divisions in the x-direction. 
The quadrilaterals are formed using a total of 44 divisions in 

Fig. 1 Load-elongation curves for rate-independent and rate-dependent 
responses for the imposed strain rates of i„ = 2.0, 0.02, 0.0002 sec"1. 
((A/70/ho) = 0-005) 

the z-direction. Of these, 14 equidistant divisions are chosen 
to form a finer mesh at the anticipated neck region between 
z = 0 and 0.868/J0 . The remaining part of the specimen is 
divided into 30 equidistant divisions. The key features of the 
deformation history reported here are similar to the axisym-
metric case reported in Tugcu (1989). 

In (13), the material constants, which were kept the same 
in all the results presented here, are the strain-hardening pa
rameter N = 0.22, the reference strain rate eR = 0.000137, 
(E/K) = 50, eY = (ffy/£) = 0.004. The Poisson's ratio was 
taken as v = 0.3. These values together with the range the 
strain-rate sensitivity index m is varied, and can be considered 
typical of metals with the exception of the E/K value. The 
relatively small E/K employed in the analysis provides com
putational efficiency by allowing larger time increments, as 
opposed to a more realistic range of 400-500. However, for 
the parametric study performed here, the particular choice of 
this material property is not critical to the analysis. 

The effect of the imposed strain rate on the load-elongation 
response is shown in Fig. 1, for a specimen with strain-rate 
sensitivity parameter m = 0.018 and a geometric imperfection 
corresponding to an initial area defect of (AhQ/h0) = 0.005 at 
the neck (z = 0), given by | = 0.005 in (16). The rate-inde
pendent response is also depicted in the same figure. The three 
other cases compared correspond to the imposed strain rate 
values of ea = 2.0,0.02, and 0.0002 sec^1 from top to bottom, 
respectively. The arrows are used to indicate the maximum 
load points which occur at (U/L0) = 0.211,0.230,0.255,0.236 
for the rate-dependent cases with k„ = 2.0, 0.02, 0.0002 sec~' 
and the rate-independent response, respectively. The corre
sponding uniform section strains are ezz (0, L0) = 0.180, 0.196, 
0.213, and 0.190 in the same order as above. It is seen that 
the attainment of the maximum load occurs at a smaller elon
gation for a given material when the imposed strain rate is 
increased. The shift, with respect to the maximum load point 
of the limiting case of rate-independent response in Fig. 1, is 
therefore determined from the competition between the strain-
rate sensitivity index in and the imposed strain rate ka. Note 
that the imperfection magnitude also plays a major role in the 
attainment of the load maximum as will be shown. This and 
other related aspects are discussed in more detail in Tugcu 
(1989). 

The onset of plastic instability designated by the circumflexes 
in Fig. 1 and the rest of the figures is defined as the attainment 
of the maximum axial (azz) or effective stress (o>) at the uniform 
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Fig. 2 The evolution of the normalized neck area and the axial strains 
at the neck section (z = 0) for the cases depicted in Fig. 1 

end section, z = L0. Note that <j,y in this section and in the 
figures will refer to the physical components of the true stress 
while exx and ezz denote the logarithmic strain components. For 
the specimen geometry employed in the analysis (L0/ho = 4), 
the maximum stress states are attained almost simultaneously 
across the thickness of the end section during the deformation 
history (differences of the order of a fraction of one percent 
in engineering strain U/L0 marked the variation in the order 
of attainment of these maximum stress states along x). For 
consistency, we present our results based on the deformation 
history of the mid-section x = 0. For the rate-independent 
behavior, this maximum stress state at the end section also 
marks the onset of elastic unloading. Evidently, in the presence 
of rate sensitivity effects, a descent from the maximum stress 
(i.e., relaxation) can happen under continuing viscoplastic 
straining with decreasing ef values in (13) until the limiting 
rate-independent curve corresponding to ef = 0 in (13) is 
reached. Only then is any further decrease in the stress resulted 
from elastic unloading. In our figures the point where elastic 
unloading starts is marked with a solid triangle which desig
nates the maximum strain state at the uniform section x = 0, 
z = L0. This maximum strain state at the uniform section 
cannot, however, be taken as the limit strain unlike the rate-
independent response, as discussed in the next figure. 

In Fig. 2 the evolution of the neck section area h(t)/h0 and 
the axial strain history at the mid-point x = 0, z = 0 are 
plotted as a function of the engineering strain U/Lo corre
sponding to the four cases given in Fig. 1. In this figure, until 
the maximum stress state at the end section is reached (des
ignated by circumflexes), we observe almost linear changes in 
the strains and the normalized areas of the neck sections for 
all the cases shown. Any additional deformation thereof, how
ever, is accompanied with steep changes in the state variables 
plotted. The maximum strain states associated with the elastic 
unloading are attained well into the developed stages of neck 
growth in Fig. 2, especially for the cases with the prescribed 
strain rates of e „ = 2.0 and 0.02 sec ~'. The onset of instability 
marked with circumflexes occur for the uniform section strains 
of e„ (0, L0) = 0.238, 0.260, 0.253, and 0.192 for the rate-
dependent cases with ea = 2.0, 0.02, 0.0002 sec"' and the 
rate-independent response, respectively. The elastic unloading 
in the same order occurs for ezz (0, i 0 ) = 0.246, 0.272, 0.258 
for viscoplastic behavior, while these two states are identical 
for the rate-independent case. The uniform section strains given 

above at the maximum stress and maximum strain states differ 
little (note that a larger difference will be presented later for 
m = 0.045) despite the significant differences in the elongation 
levels (U/LQ). This is an indicator for the rapid neck growth 
after the uniform section stress attains a maximum, since the 
additional end displacement after the onset of instability is 
taken up mainly by the neck growth. Therefore, on a forming 
limit curve, little difference would be resulted for the plane-
strain case when either maximum stress or maximum strain 
criteria is employed to define the limit strain. When biaxial 
strain states in the plane of the sheet are considered, the effect 
of the choice of the instability criteria is likely to be reflected 
to a larger degree manifested in the uniform section strain in 
the j'-direction accumulated after the attainment of maximum 
stress in the ^-direction. Yet, when the plane-stress condition 
is imposed as is often done in the biaxial strain range, smaller 
differences in limit strains are expected between the predictions 
of maximum stress and maximum strain criterion. This is due 
to the faster neck growth resulting from the plane stress as
sumption, as opposed to the three-dimensional analysis re
ported here (Needleman and Tvergaard, 1984). We also note 
that for a rate-dependent solid, a maximum stress state at the 
uniform section can only be reached asymptotically (similar 
to the evolution of the maximum strains), for the type of 
analysis performed in Marciniak et al. (1973), since the end 
section strain increases at the prescribed rate of straining. 

In Fig. 1 we observe that in the later stages of neck devel
opment, the load-elongation curve for the rate-sensitive be
havior with ea = 2.0 sec - 1 intersects the other rate-dependent 
responses, indicating a faster neck growth for this case. This 
is resulted due to the dependence on the imposed rate of strain
ing ea, introduced through the additive type of uniaxial law 
(13) adopted. A separable power law, such as that employed 
in Marciniak et al. (1973), renders the deformation history 
independent of the imposed strain rate. This in turn means 
practically identical curves for the variables plotted in Fig. 2 
for the separable representation of material strain-rate sensi
tivity. Experimental evidence to both types of material re
sponse, suggesting possible preference for the type of uniaxial 
law for a particular material, was reported in Tugcu (1989). 
With the additive type of uniaxial law employed here, it is seen 
in Fig. 2 that the attainment of plastic instability during the 
deformation history is determined from the combined effect 
of the material strain-rate sensitivity index m and the imposed 
strain rate ea. For the particular cases studied here, the onset 
of necking in increasing order of engineering strains occurs 
for ea = 2.0, 0.0002 and 0.02 sec - 1 , respectively. Conse
quently, the subsequent neck development in Fig. 2 is deter
mined by the order the necking instability sets in. 

In the biaxial tensile strain range of forming limit curves, 
the critical instability mode is of diffuse necking type as ana
lyzed here. The final fracture in plane-strain tension, however, 
often occurs in bands of intense shear which develop in the 
necking region in the advanced stages of localized deformation 
(Needleman and Tvergaard, 1984). The formation of shear 
bands in a specimen with diffuse necking type of initial in-
homogeneity, as prescribed in our study, cannot be predicted 
with the kind of constitutive modeling employed here. Never
theless, a smaller overall engineering strain at fracture for the 
case with ea = 2.0 sec"1 can be concluded qualitatively, since 
shear band initiation is dependent on the gradient of field 
variables (Becker and Needleman, 1986). 

The stress and strain distributions across the thickness of 
the neck section (z = 0) are depicted in Fig. 3 for the rate-
dependent case of Fig. 1 with ea = 0.02 sec - 1 . The distributions 
corresponding to the maximum stress and maximum strain 
state of the uniform end section are displayed in this figure 
corresponding to the engineering strain values of (U/L0) = 
0.348 and 0.443, respectively. Here and subsequently, <J„, = 
(j t t/3 denotes hydrostatic tension. At the onset of instability 
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Fig. 3 The stress and strain distributions across the neck section for 
the rate-dependent response (m = 0.018, ie = 0.02 sec"1.) at maximum 
stress and maximum strain states {(Ah0/h0) = 0.005) 
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Fig. 4 The stress distributions along the mid-plane (x = 0) and the 
specimen profile for the rate-dependent response (m = 0.018, e, = 0.02 
sec"1.) at the elongation level of {U/L0) = 0.473 ((Ah„/h0) = 0.005) 

given by the maximum stress state, it is seen that the state of 
stress is uniform and the transverse normal stress is axx ~ 0. 
The subsequent appearance of the stress axx is big enough to 
influence the distribution of the hydrostatic tension am. The 
stress distributions along the mid-plane x = 0 at ((U/L0 = 
0.473) are displayed in Fig. 4 as superimposed on the specimen 
geometry. 

The stress triaxiality factors at the neck (z = 0) section are 
displayed in Fig. 5 corresponding to the rate-independent and 
rate-dependent cases of Fig. 1 with e„ = 2.0 and 0.02 sec - 1 . 
In plane strain, the triaxiality factor is defined as 

Fig. 5 The evolution of the stress triaxiality factors at the neck (z = 
0) for the rate-independent and rate-dependent (m = 0.018) responses 
for the imposed strain rates of # = 2.0 and 0.02 sec"1 . ((Ah„/h0) = 0.005) 
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Fig. 6 Load-etongation curves for different strain-rate sensitivity pa
rameters (m = 0.018 and 0.045) and initial thickness inhomogeneities 
at the neck ((Ahp/h„) = 0.005 and 0.0125) for the imposed strain rate of 
e. = 0.02 sec" . 

where the superposed bar denotes the average value across the 
cross-section. Here too the value of FT, almost equal to unity 
until the onset of instability, represents the part of the defor
mation history which is practically uniform and can be pre
dicted with sufficient accuracy employing the plane-stress 
approximation. 

The effects of the material strain-rate sensitivity index and 
the initial inhomogeneity on the deformation history are dem
onstrated in Fig. 6. In this figure the rate-dependent case of 
Fig. 1 with ea — 0.02 sec - 1 is reproduced. The top curve in 
Fig. 6 is for a material with m = 0.045, while the innermost 
curve corresponds to an initial area defect of (Ah0/h0) = 0.0125 
at z = 0 (£ = 0.0125). The rest of the parameters for these 
curves are identical to that of the mid-curve replotted. From 
this figure we observe that increasing the initial imperfection 
2.5 times within the range considered does not cause significant 
difference in the load-elongation curve until the attainment of 
maximum loads. Differences associated with a faster neck de
velopment for the larger imperfection case start after load 
maximum. The onset of necking occurs at the uniform end 
section strains of ezz (0, L0) = 0.209 and 0.260 for the large 
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Fig. 7 The evolution of the normalized neck area and the axial strains 
at the neck section (z = 0) for the cases depicted in Fig. 7 
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and small imperfection cases, respectively. The evolutions of 
the neck area and the axial strain ezz (0, 0) are displayed in 
Fig. 7 for all the three cases given in Fig. 6. In Fig. 7 we observe 
that differences between the two cases with different initial 
imperfections arise early in the deformation history for (£// 
L0) < 0.1. It can also be concluded that for the right com
bination of the parameters studied here (TV, m, ea, Ah0/h0), if 
the condition of plastic instability is met anywhere along the 
uniform section when the rate-independent stress-strain curve 
is reached, then additional necks can form in this section as 
well. 

The influence of the strain-rate sensitivity parameter m on 
necking behavior is seen in Fig. 6, comparing the top (m = 
0.045) and the mid-curve (m = 0.18). The onset of necking 
for in = 0.045 occurs at (U/L0) — 0.412, for the uniform end 
section strain of ezl (0, Z-o) = 0.306. The uniform section strain 
for this case attains a maximum given by ezz (0, L0) = 0.332. 
Therefore, for this value of m, a relatively large difference is 
resulted in the uniform section strains between the maximum 
stress and maximum strain states. While the elongation span 
between the maximum load point and the onset of instability 
is larger for this case, it is also seen that the load levels drop 
at a faster rate between these two points. 

The evolution of the effective viscoplastic strain rate histories 
for the two cases in Fig. 6, corresponding torn = 0.018 and 
m = 0.045, are depicted in Fig. 8 for both the neck and the 
end section on the mid-plane x = 0. From this figure it is seen 
that the nonuniformity between the viscoplastic strain rate 
histories of the incipient neck and the end sections appears 
early in the deformation history. Also to be noted for the case 
with m = 0.018 is that before the numerical computations 
were arbitrarily terminated, the effective viscoplastic strain rate 
at the neck section attains a maximum which is followed by 
a sharp drop with no detectable sign of degeneration in the 
results. The possibility of numerical deterioration notwith
standing, one likely explanation for this behavior is that, in 
view of the reductions in the axial load levels, an increase in 
strain rate can no longer be accomodated, as determined from 
the interplay between the evolutions of the stress and area of 
the neck section. 

As mentioned previously, the analyses of sheet-metal form
ing limit curves are traditionally performed by invoking the 
plane-stress assumption. The validity of this assumption for 
the whole range of deformation history is certainly a major 
concern and received due attention (Hutchinson and Neale, 
1978c). The evidence presented in Figs. 3 and 5 in particular, 
indicate that for rate-dependent solids, the maximum stress 

Fig. 8 The evolution of the effective viscoplastic strain rates at the 
neck (z = 0) and the uniform end sections (z = L0) for the rate-dependent 
responses m = 0.018 and 0.045 ( i „ = 0.02 sec"1., (Ah„/h0) = 0.005) 

criteria as the onset of instability, ascertains the validity of 
this assumption up to the attainment of critical strains. Further, 
the evolution of the strain-rate history of the uniform end 
sections depicted in Fig. 8 demonstrates the degree of ap
proximation involved in the approximate long-wavelength 
analyses, since these solutions are based on the assumption 
that the uniform sections deform at the constant strain rate 
imposed. An immediate consequence of this assumption is that 
while the load-elongation histories shown in Figs. 1 and 6 can 
be obtained with good accuracy to the end of the plateau 
regions, the ensuing sharp drops cannot be predicted. 
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An Analysis of Shear Localization 
During Bending of a 
Polycrystalllne Sheet 
The development of shear localization in a polycrystalline sheet subject to pure 
bending is analyzed numerically using a slip-based constitutive model. The material 
response at each finite element integration point is determined by averaging the 
stiffness matrices from differently oriented FCC crystals. The effects of texture 
evolution, hardening, and strain-rate sensitivity are incorporated. The model predicts 
localized plastic deformation at both the tensile and the compressive surfaces of the 
sheet during bending. Comparison of the numerical results with a section of the 
bent sheet indicates that strain localization is predicted at the appropriate strain 
levels and orientations. 

1 Introduction 
The development of shear bands during plastic deformation 

may degrade material performance or lead to fracture. The 
abundance of research dedicated to studying shear bands is an 
indication of their importance and of the difficulty in under
standing shear band formation. Many analytical and numerical 
models have been employed to study shear band initiation. 
One of the more difficult aspects of developing these models 
is in formulating material constitutive relationships which both 
adequately characterize the behavior of the material and will 
permit plastic flow localization at realistic strain levels. 

A class of constitutive relationships commonly used in shear 
band studies simulates a yield surface with a vertex (Hill and 
Hutchinson, 975; Needleman and Rice, 1978; Rudnicki and 
Rice, 1975; Tvergaard, Needleman and Lo, 1981). The exist
ence of a vertex or a region of sharp curvature at the loading 
point of the yield surface reduces the stiffness of the material 
response to abrupt changes in loading path. The motivation 
for incorporating a yield surface vertex in plasticity models 
comes from predictions of yield surface vertices from crystal-
based plasticity models (Hill, 1967; Hutchinson, 1970; Asaro 
and Needleman, 1985). In the calculations of Hutchinson (1970) 
and Asaro and Needleman (1985), these yield surface vertices 
were found in self-consistent and Taylor-like polycrystal 
models. 

In this study, the Taylor-like polycrystal model developed 
by Asaro and Needleman (1985) is used to define the consti
tutive behavior of each element in a finite element model. This 
is similar to the finite element crystal calculations of Peirce, 
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Asaro, and Needleman (1982, 1983) and of Harren, Deve, and 
Asaro (1988), except that here the stiffness matrix for each 
element is determined by the average of the stiffness matrices 
of eight crystal orientations. Mathur and Dawson (1989) also 
used a Taylor-like model in a finite element analysis of a rolling 
process. However, the approach of Mathur and Dawson (1989) 
is somewhat different in that they used an Eulerian finite ele
ment model and the effects of texture evolution were incor
porated by an iterative process involving integration of the 
crystal model along streamlines. 

The present analysis is concerned with the development of 
shear bands in sheet or plate during pure bending. A previous 
study by Triantafyllidis, Needleman, and Tvergaard (1982) 
using a plasticity theory with corner effects has demonstrated 
the ability of finite element models to capture the shear band 
formation on both the compressive and the tensile surfaces 
during bending. In their analyses, shear bands initiated at the 
surfaces and propagated toward the neutral axis. The severity 
of the shear bands was affected by the wavelength of the initial 
imperfection and the details of the yield surface vertex char
acterization. In the present model, the vertex effect enters 
naturally through use of the Taylor-like polycrystal constitutive 
model. The behavior of each element is governed by a different 
set of crystal orientations so that the material is nonhomo-
geneous. Thus, no geometric imperfection is needed to initiate 
plastic flow localization. 

2 Model Description 
2.1 Crystal Constitutive Relations. The material behav

ior in the analysis is governed by a rate-dependent slip-based 
constitutive model. In this model, plastic deformation is as
sumed to result from slip along crystallographic planes. The 
formulation of the constitutive relations is identical to the rate-
dependent crystal model developed by Peirce et al. (1983). The 
model accounts for reorientation of the crystal at finite de
formation and for the cubic symmetry of the elastic constants. 
A brief account of the constitutive relations is given below. 
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The deformation of a crystal is by a combination of slip 
along crystallographic planes and elastic distortion of the crys
tal lattice. This is represented by a multiplicative decomposition 
of the deformation gradient 

F = F*.F P (1) 

The elastic distortion of the crystal lattice and rigid rotations 
are embodied in F*. The plastic part of the deformation, Fp , 
includes only the deformation resulting from crystallographic 
slip without disturbing the crystal lattice. The slip occurs on 
planes with normals m(a) along directions denoted by s(a). Here, 
the Greek indices represent the 12 slip systems in FCC alu
minum alloys. The orthogonal unit vectors m(a) and s(a) are 
defined in the reference orientation of the crystal. Since the 
crystal lattice is not affected by Fp , the current orientations 
of the slip plane normals and slip directions are 

Ha)' • F*" and S ( a ) - F 'S(ay (2) 

Using Eqs. (1) and (2), the velocity gradient is given by 

F . F " = F «F 2̂  («)«. 
»(<*)•"(<*)• (3) 

The first term incorporates the elastic stretching and the spin 
of the crystal lattice. The second term is the deformation due 
to slip with the slip rate along a given slip system being denoted 
by -y(a). The plastic part of the velocity gradient is additively 
decomposed into its symmetric, Dp , and skew-symmetric, Qp, 
parts which can be written as 

12 i 12 
D P = 5 ] T(a>r(s;,in(*a) + m ; a ) s ^ ) = 2 7<a)P (a) 

a=l 

12 

a=l 

12 
(4) 

°"=I] 7(^(V>nC>-m:«,C>)=X; Y(a,W<«>. 

Due to the small elastic stretch, s ( a ) and m{a) are not unit 
vectors; but they remain orthogonal. Hence, Tr(Dp) = 0 and 
the plastic flow is nondilatant. 

As suggested by Rice (1971), the resolved shear stress, r(a), 
is chosen such that it is work conjugate to the slip rate, yia). 
Expressing the plastic work rate in the reference volume, 

r : D p = | ] 7 ( a , T : P ( " » = | : 7 < a , ( m ; > - C ) ) 
<x~ 1 a = 1 

^ T ' - V 1 0 ' . (5) 
a=l 

Here, T is the symmetric Kirchhoff stress which is related to 
the Cauchy stress by T = Jo, where J = Det(F). For most 
metals the volume change during deformation is small, and 
little error is introduced by using the Cauchy stress and Kir
chhoff stress interchangeably. 

The elastic stress-strain response is obtained by assuming 
that the elastic distortion of the crystal lattice can be obtained 
from a strain energy function, 4>- The elastic properties are 
determined in terms of the lattice-based second Piola-
Kirchhoff stress, T*, and the Lagrangian strain of the lattice, 
E* = '/2(F*T • F* - I). Both of these tensors use the undis-
torted lattice of the intermediate configuration as a reference 
configuration. Slip associated with F p does not disturb the 
lattice; hence, formulation of the elasticity relations is inde
pendent of ¥p. 

The stress and stress rate are determined from the strain 
energy function by 

* 3</> 

3E 
and T* 

d24> 
= 3E*dE* 

:E* = 5D:E*, (6) 

respectively. Using the relation T = F* 
of change of Kirchhoff stress is 

T* • F * \ the rate 

V=F*.(D:E*>F* r+F*»F*- 1 .T + 7 .F*- r -F* (7) 
The elastic part of the velocity gradient can be decomposed 
into symmetric, D*, and skew symmetric, 0*, parts; F* • F*~' 
= D* + 0*. Then, by expressing the Lagrangian strain rate 
of the lattice as E* = F*T • D* • F*, the Kirchhoff stress rate 
is given by 

T = £ : D * + fi*»T-T.O*. (8) 
The fourth-order modulus tensor, £, can be written in Carte
sian components on orthonormal base vectors as 

&uki = F*iF*JF*kF*u'S)rs'" + - ( 5 ' V + 5'V* + r'V* + T ' V ) , 

(9) 
where 2D™'" are the components of the crystal elastic moduli 
referred to the undistorted, unrotated lattice; and 8ij is the 
Kronecker delta. Summation is implied for the repeated Latin 
indices in Eq. (9). For cubically symmetric crystals with con
stant elastic moduli, there are three independent elastic con
stants. If the orthogonal coordinate axes are chosen to coincide 
with the crystal cube axes, the nonzero components are 

2D" = C11 

£>**"= CT2 kjtl (10) 

= C44 k^l (no summation). 

Replacing the elastic spin and rate of deformation in Eq. 
(8) by fl* = Q - fip and D* = D - Dp , and expressing the 
stress rate in terms of the Jaumann rate, T; 

Writing the stress rate in terms of the slip rate, 
12 

T = £ : D - ^ ] yla)Ria), 

where 

Ri<»)=,r, :pt«J+W /(«). •W (a) 

(11) 

(12) 

(13) 

The description of the rate constitutive equations is com
pleted with a prescription of the slip rate, yM. For the rate-
dependent material model considered here, the slip rate is only 
a function of the resolved shear stress, r(a), and resistance of 
the slip system to slip, g{a\ Hence, the terms in the summation 
in Eq. (12) are completely determined by the current state of 
the material. For this analysis, the slip rate is taken as 

T 
( a ) . osign(Tw) 

Act) 
sinh : (14) 

where K = sinh~ '(1) and a is a reference slip rate characteristic 
of the slip rate at which the hardening function is determined. 
For small arguments of the hyperbolic sine, Eq. (14) reduces 
to a power-law rate relation with exponent m. For larger values 
of the argument, it gives an exponential dependence of the slip 
rate on the stress. 

The slip system hardenss, g{a\ changes during deformation 
due to structure evolution associated with work hardening and 
recovery processes. The slip system resistance depends on sol
utes and precipitates in the material. The resistance of a par
ticular system to an imposed strain rate also depends on the 
dislocation structure of that slip system and on the dislocation 
structure of the intersecting slip systems. The dislocation struc
tures depend on the deformation history. However, for the 
heavily worked material considered in this analysis, it will be 
assumed that all slip systems have the same initial resistance 
and harden at an equal rate. This rate is determined by the 
summation of the slip rate on all of the slip systems. The slip 
system strength is given by 
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Fig. 1 Crystal orientation distribution functions for an aluminum sheet: 
(a) from X-ray data, (b) reconstructed from discrete orientations 

,(«) = Tc(y); T= E 17 
( a ) \dt, (15) 

where rc(y) is a function determined experimentally. 
The integration of the stress rate from Eq. (12) with the slip 

rate determined by Eq. (14) requires small time steps for stable 
numerical integration. The tangent modulus method of Peirce 
et al. (1983) is used to increase the stable time step size. The 
reader is referred to Peirce et al. (1983) for details of the 
method. It is notable that the moduli determined from the 
tangent modulus procedure are nonsymmetric. Also, except 
for a few special crystal orientations, the components of the 
moduli referred to the sample coordinate axes do not possess 
orthotropic symmetry. Normal stresses applied to a block of 
material can produce shear strains. 

For the finite element analysis, the moduli from eight crystal 
orientations are averaged to form the material stiffness at each 
element integration point. The deformation of each of these 
component crystals is the same. The average stress of the com
ponent crystals determines the stress at the integration point. 
In this way, the constitutive response at an integration point 
is determined by what is essentially a Taylor-like model which 
uses the local strain rates determined by the finite element 
method. The averaging procedure is identical to the averaging 
procedure used by Asaro and Needleman (1985) in their Taylor
like polycrystal model. The only difference is the small number 
of grains involved in the present averages. The crystal consti
tutive model has been implemented as a user subroutine in the 
commercial finite element code ABAQUS (1988). A description 
of the implementation is given by Smelser and Becker (1989). 

2.2 Material Properties. The eight crystal orientations at 
each integration point were selected at random from a set of 
800 orientations which characterize the texture of an aluminum 
alloy sheet. This gives a different set of crystal orientations 
for each integration point while maintaining, statistically, the 
overall texture. These 800 orientations were calculated from 
the W coefficients of the Crystal Orientation Distribution' 
Function (CODF) (see e.g. Bunge, 1982) obtained from anal
ysis of X-ray data taken at the midthickness of the sheet. 
CODFs representing the X-ray data and CODFs reconstructed 
from the discrete orientations are given in Figs. 1(a) and 1(b), 
respectively. 

The slip system hardening relationship, rc(y), was deter
mined based on uniaxial tension tests conducted on sheet spec
imens. The tensile axis was perpendicular to the rolling direction 

of the sheet. The hardening response was chosen such that the 
predicted uniaxial stress-strain curve from a Taylor-like model 
using the 800 crystal orientations would match the data from 
the tension tests. The use of the Taylor model accounts for 
texture evolution effects on the hardening. Because of the 
texture evolution, obtaining a good fit involves trial and error. 
After a few iterations, the slip system hardening response was 
determined to be 

TC(7)/CT0 = 0 . 4 4 ( 7 + 0.03)° (16) 

where <T0 is the initial yield strength of the material in uniaxial 
tension. 

The strain-rate sensitivity exponent used in the analysis, m 
= 0.005 in Eq. (14), is within the range of material strain-rate 
sensitivities determined experimentally. The cubic elastic con
stants used in Eq. (10) were taken from Smithells Metals Ref
erence Book (1983): 

C\ l/oo = 327.3 

C12/a0= 187.88 

C44/a0 = 85.76 

(17) 

2.3 Model Geometry and Boundary Conditions. The re
gion modeled is a small portion of a sheet with thickness h 
and length h/A, Fig. 2. The sheet is subjected to pure bending 
around an axis parallel to the rolling direction. The tensile and 
compressive stresses resulting from the bending are along the 
transverse direction of the sheet, which is the direction in which 
the material properties were determined. Equilibrium and com
patibility with the material on either side of the model region 
are maintained by imposing periodic boundary conditions. 
These boundary conditions require that the surfaces remain 
straight and free of shear tractions. In addition, the loading 
is pure bending and no net forces act on the section. These 
conditions are applied in ABAQUS (1988) through the user 
multipoint constraint option. Plane-strain conditions are im
posed as a constraint on the out-of-plane deformation. The 
rate of bending was prescribed such that the outer and inner 
surfaces of the sheet would experience a strain rate approxi
mately equal to a, Eq. (14). The rate of bending is 8 = 
0.5a, where 6 is the angle between the two sides of the model 
region with normals initially in the A:-direction. 

The finite element mesh used in the analysis is shown in Fig. 
3. The discretization consists of 40 quadrilaterals through the 
thickness of the sheet and 10 elements across the width of the 
model region. Each of the quadrilaterals is composed of four 
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constant strain triangular elements arranged in a "crossed tri
angle" configuration. Discontinuities in stress and strain are 
permitted across the element boundaries. This makes them well 
suited for capturing shear bands (Peirce et al., 1982; Tvergaard 
et al., 1981; Needleman and Tvergaard, 1984). Discontinuities 
in shear strain are possible across the sides of the quadrilaterals 
as well as across the quadrilateral diagonals. An ideal mesh 
would be one that is constructed such that the diagonals of 
the quadrilaterals are along the direction of the shear bands 
when they form. This mesh design is desirable to capture the 
shear bands effectively; but, without a priori knowledge of the 
solution, the mesh design is a guess. The mesh design could 
be improved based on the results from the model, and the 
calculation rerun. However, only one calculation is run in the 
present study. 

The finite element solution is computationally intensive. The 
numerical integration of the constitutive equations for eight 
crystal orientations at each integration point is time consuming. 

-h/4-

" : ; : 

Fig. 3 Finite element discretization 

(») (h) M (d) (<0 

Fig. 2 Orientation of the model region in the sheet 
Fig. 4 Deformed finite element meshes. The bend angles in radians 
are: (a) 6 = 0.05; (b) 0 = 0.10; (c) 0 = 0.15; (d) 6 = 0.20; (e) 6 = 0.25. 
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Fig. 5 Contours of maximum principal logarithmic strain. The bend 
angles in radians are: (a) 6 = 0.05; (b) 0 = 0.10; (c) B - 0.15; (d) 6 = 0.20; 
(e) $ = 0.25. 
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la)

lb)

Fig. 6 la) Predicted contours of maximum principal logarithmic slrain
superposed on a micrograph of a sheet deformed In bending, (b) same
micrograph without Ihe contours

In addition, the stiffness matrix resulting from the incremental
form of the constitutive relations is nonsymmetric which re
quires additional computational effort. A large number of time
steps are also needed to obtain a solution. The integration of
the constitutive relations by the forward gradient method of
Peirce et al. (1983) requires small time steps for stable and
accurate numerical integration. The calculation was carried
out on a CRAY-YMP at the Pittsburgh Supercomputing Cen
ter. The solution took approximately 1400 time steps and nine
hours of CPU time.

3 Results and Discussion
Deformed finite element meshes are shown in Fig. 4 at var

ious bend angles, (J. Corresponding contours of maximum
principal logarithmic strain are given in Fig. 5. The material
inhomogeneity resulting from different combinations of crystal
orientations in the elements causes the deformation to be non
uniform from the outset. The nonuniform deformation near
the surface results in surface roughness which introduces geo
metric imperfections into the model. At (J = 0.10, Fig. 5(b),.
the strain in regions near the upper right and lower left of the
model appears to be elevated. By (J = 0.15, Fig. 5(c), these
regions have developed into bands of enhanced deformation,
and the material at the lower left appears to be shearing. The
enhanced deformation in these bands persists through (J '=

0.25 where the shear in the upper and lower bands is more
evident.

In Fig. 6, contours of maximum principal strain at (J = 0.20

Journal of Applied Mechanics

are drawn along with the contours for the adjacent sectors of
the sheet. The contours in these sectors were determined from
the periodic symmetry. This composite contour plot is overlaid
on a micrograph of an aluminum sheet deformed in bending.
The angles of the regions of enhanced plastic flow indicated
by the contour lines closely correspond to the shear band angles
on the micrograph. Specific band angles are not determined
due to the ambiguity associated with defining angles between
the planar bands and the curved surfaces of the bent sheet.

The model also tends to predict a band spacing which is not
too different from the shear band spacing in the material. The
similarity of the spacing is probably coincidental since the band
spacing may be related to the finite element discretization, the
size of the region modeled, and the initial distribution of the
crystal orientations.

The deformation never tota]]y localizes into bands as it does
in true shear bands. The material outside of the bands continues
to deform but only at about half of the strain rate as that of
material in the bands. One reason for impeded shear locali
zation is the material's resistance to shear. Since the consti
tutive response of each element is determined by a different
set of crystal orientations, each element wi]] exhibit different
tendencies for shearing. If the particular set of orientations in
an element resists shear, this element will impede the propa
gation of a shear band and the plastic deformation will be
more diffuse. In real materials, other factors such as details
of local grain interactions and nonuniform hardening of the
grains also affect the propagation of shear bands.

Another reason for the inability of this model to predict true
plastic flow localization is a combination of the coarseness of
the finite element discretization and the orientation of the
bands with respect to the mesh. As was discussed previously,
strain discontinuities are possible across the element edges and
the quadrilateral diagonals. Comparison of Figs. 4(e) and 5(e)
shows that the bands of enhanced deformation do not follow
the element diagonals exactly. As a result, the shear must occur
over several elements widths. In this model, several element
widths is a significant fraction of the region modeled. A finer
mesh which is better oriented to capture strain localization
would provide improved spatial resolution for shear band pre
dictions. PresentlY, however, the cost of calculations with a
significantly refined mesh using the crystal constitutive rela
tions is prohibitive.

The distribution of crystal orientations within the model
affects the results. Had different sets of eight orientations been
chosen at the integration points, the inhomogeneity would be
altered and the regions of enhanced plastic flow might be in
different locations.

The number of crystal orientations used to determine the
properties at the integration points will also affect the hom
ogeneity of the material. For this type of model, one method
of choosing the number of orientations to be represented by
an element is to determine the number of grains which would
be contained within the element volume for three-dimensional
calculations or within the element area for two-dimensional
analyses. Since the grains in the sheet are elongated in the
rolling direction (the out-of-plane direction for the model), it
is assumed that the properties in this direction vary slowly and
that a two-dimensional model is appropriate here. Based on
this criterion and the micrograph of Fig. 6, eight orientations
per element is of the correct order of magnitude for this sim
ulation. If the number of orientations is too large, localization
behavior will be inhibited. This would result from the require
ment that all orientations at an integration point undergo the
same deformation. A few unfavorable orientations would
impede shear deformation. Also, with a larger number of ori
entations per element, the property variation from one element
to the next would be reduced, decreasing the driving force for
the nonuniform deformation.

If the above criterion for selecting the number of orientations
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per element is assumed to be reasonable, the results shown in 
Fig. 5(a) have interesting implications. The deviation of the 
0.02 strain contours from a circular arc (which is their shape 
for a homogeneous material) is on the same order as the spacing 
between the 0.02 and 0.04 contours. This implies that pertur
bations in the strain field due to material inhomogeneities are 
on the same order as the strain gradients due to the applied 
deformation. Thus, material inhomogeneity should be consid
ered in the analysis of this sheet in bending; the product of 
the strain gradient and the microstructural size scale (grain 
size) is not negligible compared to the strain. 

4 Conclusions 
Predictions of plastic strain localization during bending have 

been obtained using a slip-based material constitutive model. 
The moduli from several crystal orientations are averaged in 
a Taylor-like model to obtain the moduli for use in the finite 
element analysis. Bands of localized plastic deformation are 
formed at realistic strain levels and occur at angles which are 
in agreement with the shear band angles in a bent sheet. True 
plastic strain localization is impeded by a combination of crys
tal orientations which resist shearing and the coarseness and 
orientation of the finite element mesh. A criterion has been 
suggested which can be used to estimate the number of crystal 
orientations needed to characterize the behavior of an element. 
This number could be thought of as a crude measure of size 
scale which controls the level of material inhomogeneity in the 
model. 

In addition to shear band calculations, this type of consti
tutive model would also be useful for modeling a variety of 
processes in which texture evolution (changing anisotropy) is 
coupled to the deformation. The model can be used to deter
mine the crystallographic texture resulting from forging, roll
ing and extrusion operations. The model could also be used 
to include the effects of evolving material anisotropy on form-
ability and earing predictions in sheet forming processes such 
as drawing and ironing. Although polycrystal constitutive 
models have many potential applications, cost remains their 
major drawback. 
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On the Use of Approximation 
Methods for Microcrack Shielding 
Problems 
There is experimental evidence that stress-induced microcracking near a macrocrack 
tip enhances the fracture toughness of brittle materials. In considering the interaction 
of the macrocrack with multiple microcracks using a discrete model, it is essential 
to use approximation methods in order to keep the amount of the computation to 
a tractable level. However, when crack distances are small, the results of the ap
proximation methods can be significantly different from the numerical solution 
based upon the exact formulation. The results obtained by these approximation 
methods will be compared with the numerical solution to show the applicability 
ranges in which the errors are acceptably small. The use of results obtained by the 
approximation methods outside applicability ranges in literature is shown to lead 
to incorrect conclusions concerning microcrack shielding. 

1 Introduction 
There now exists experimental evidence that stress-induced 

microcracking near a macrocrack tip enhances the fracture 
toughness of brittle materials (Riihle, et al., 1987; Cai, et al., 
1990; Faber, et al., 1990). Experimental studies by Riihle et 
al. (1987) have provided conclusive evidence of stress-induced 
microcracking toughening in a zirconia-toughened alumina. 
Recently, Faber et al. (1990) have shown a relationship between 
microcrack formation and an increase in toughness in SiC-
TiB2 composites with phases of different thermal expansion 
coefficient. The stress-induced microcracks near the macro
crack tip shield the macrocrack from the applied stress, thereby 
increasing the fracture toughness. 

In addition to experimental studies, microcrack toughening 
has been also the subject of numerous modeling studies. The 
two basic approaches are continuum modeling (Evans and 
Faber, 1981; Clarke, 1984; Evans and Faber, 1984; Evans and 
Fu, 1985; Charalambides and McMeeking, 1987; Hutchinson, 
1987; Ortiz, 1987; Charalambides and McMeeking, 1988; Laws 
and Brochenbrough, 1988; Ortiz and Giannakopoulos, 1989) 
and discrete modeling (Hoagland and Embury, 1980; Bowling, 
et al., 1987; Montagut and Kachanov, 1988). The continuum 
models are beyond the scope of this paper and will not be 
discussed further. Discrete models require consideration of the 
interaction of a macrocrack with microcracks (Kachanov and 
Montagut, 1986; Rose, 1986b, Rubinstein, 1986; Chudnovsky, 
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et al., 1987a; Chudnovsky, et al., 1987b; Hori and Nemat-
Nasser, 1987; Rubinstein and Choi, 1988; Gong and Horii, 
1989). For many microcracks necessary to treat the toughening 
problem, it is essential to use approximation methods to keep 
the amount of computation to a tractable level. Under certain 
conditions, the results of these approximation methods are 
very close to the exact solution. However, when the macro-
crack-microcrack and microcrack-microcrack distances are 
small, the results of the approximation methods can be sig
nificantly different from the exact solution. Indiscriminate use 
of these results could inevitably lead to incorrect conclusions. 

The purpose of this work is to evaluate three approximation 
methods using various microcrack configurations, and to es
timate the range within which the approximation methods are 
applicable. Before doing so, an iterative method to solve the 
interaction between a macrocrack and an array of microcracks 
is described. Then, the solution obtained by the iterative method 
will be checked for the case of a collinear microcrack, for 
which the exact analytical solution is available. 

2 The Iterative Method 
The present approach is based upon the same principle of 

superposition and the concept of self-consistency applied to 
the interaction of cracks. An approximate solution based upon 
this method is the use of an average traction over each mi
crocrack. An alternative approximation approach is the use 
of a point representation of microcracks (Hoagland and Em
bury, 1980; Rose, 1986b; Bowling, et al., 1987). We will present 
the solution in the context of a stationary macrocrack inter
acting with microcracks in the absence of residual stresses. The 
analysis is limited to two dimensions to keep the numerical 
computation tractable for the problem of a macrocrack in
teracting with many microcracks. 

Consider a single microcrack of length 2c and of arbitrary 
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Fig. 1 Schematic of the main coordinate system and the microcrack 
coordinate system (adapted from Hoagland and Embury, 1980) 

orientation near the crack tip of a semi-infinite crack with an 
associated applied stress intensity (Kf and Kfi) in two-dimen
sional space (Fig. 1). The near-tip stress field due to the applied 
stress without the microcrack is given by the following expres
sion (Kanninen and Popelar, 1985): 

a = KT<T,+Kfian (1) 

where ay and au are the modes I and II crack-tip stress fields 
given by 

<J 2 2 - i a n = <j>'(Zi) + <t>'(Zi) + (zi-Zi) <P"(Zi) (la) 

ff„ = 4Re [4>'(Zi)]-a22 (lb) 

where Re indicates the real part of a complex number and a 
solid line over a complex number indicates its complex con
jugate. 

The stress field in the presence of a traction-free microcrack 
is the superposition of the stress field given by the equations 
listed above and the stress field without the microcrack. In 
other words, the microcrack stress when added to the exiting 
stress field produces a traction-free microcrack. 

The microcrack stress field introduces tractions along the 
macrocrack face. To keep the macrocrack traction-free, an 
image stress field is introduced. The image stress field can be 
expressed in terms of a Green's function as derived by Hirth 
et al. (1974). The image stress at z can be expressed in terms 
of line integrals 

on - i°n •I l<p'(z) + <p'(d + <.z-zWT&\dZ (8a) 

<7ll + ff22 = [4Refo'(z)]]rf£ m 
where 

<P(Z)=i- [<$(*) + '•<£(«] Mz1'2 +'" U11/2) - Mzm - i I i I m)\, 
2-7T 

(9) 
and ff£f(£) is the microcrack stress field computed along the 
macrocrack line. The integrals are evaluated numerically to 
find the image stress field. The image stress field is then su-

07 = 

and 

1 /(cos(0/2)[l-sin(0/2)sin(30/2)] cos(0/2)sin(0/2)cos(30/2) \ 

2JT7 \cos(0/2)sin(0/2)cos(30/2) cos(0/2)[l + sin(0/2)sin(30/2)]/ 

sin(0/2) [2 + cos(0/2)cos(30/3)] cos(0/2) [ 1 - sin(0/2)sin(30/2)]\ 

2vr \cos(0/2)[l-sin(0/2)sin(30/2)] sin(0/2)cos(0/2)cos(30/2) / ' 

(2a) 

(2b) 

The initial traction on the microcrack is given by 

t = B.(n-o) (3) 

where B is the matrix of orthogonal transformation, n the unit 
normal of the microcrack, and a the existing stress along the 
microcrack line without the microcrack. The components of 
the stress are given in the main coordinate system, unless stated 
otherwise. The unit normal and the matrix of orthogonal trans
formation are related to the microcrack orientation angle \p 
by the following: 

n = («], n2) = (cos\j/, sim/'), 

B = 
n2 -rii 

"1 «2 

(4) 

(5) 

The stress field of a microcrack can be computed using 
Muskhelishvili formalism (Rice, 1968; Muskhelishvili, 1977). 
The appropriate line integral for the finite crack of length 2c 
has been presented by Rice (1968), and is given as follows: 

(c 2 - * 2 ) " 
*'(«!) = 2ir(Zi 

1 
-c)1/2(Zl + c)"2 c \P2(.s)-ipi(s)] 

~Zi 
ds 

(6) 

where / is the imaginary unit, z\ is the complex variable in the 
microcrack coordinate system and z\ - xx + iyx (refer to Fig. 
1), c is the half length of the microcrack, and pt = - tj(s). 
The terms, t\(s) and t2(s) are components of t, i.e., t(s) = 
U\(s), t2($)]- The stress components in the microcrack coor
dinate system are: 

perposed onto the existing stress field. In doing so, new trac
tions are introduced to the once traction-free microcrack. These 
additional tractions are removed by applying Eqs. (6) and (7), 
and additional image stresses are computed using Eq. (8). The 
process is repeated until the tractions on the microcrack and 
the macrocrack are lower than a specified small value which 
varies (from 10~4 to 2 MPa) depending upon the accuracy 
required. The self-consistent stress field solution is then ob
tained. 

The change in the stress intensity factor at the macrocrack 
tip is then computed: 

AAT,=V(2/7r) f -2~d^ (10ff) 

AA:„ 

V(2AT) j 

V(2Arj j °Ett) 
#. (106) 

where <$(%) is the microcrack stress field evaluated along the 
macrocrack line. The integrals are evaluated numerically. The 
mode I stress intensity at the macrocrack tip can be written as 

K! = KT + AK,. (11) 

Generally, this problem cannot be solved analytically, except 
in the case of collinear microcracks, the solutions of which 
have been presented by Rubinstein (1985) and Rose (1986a). 
Therefore, numerical methods are necessary to find the so
lution for a microcrack of arbitrary location and orientation. 
The numerical solution above does not represent a problem 
for the case of one or a few microcracks, but the computation 
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becomes lengthy for multiple microcracks. The approximation 
methods which follow provide an alternative practical ap
proach to the solution. 

The first approximation method involves the use of average 
tractions on each microcrack, where the traction on a micro-
crack is averaged over the microcrack length. The stress field 
of a microcrack subject to a uniform surface traction can be 
simply expressed in terms of the Westergaard stress function 
(Westergaard, 1939; Sih, 1966; Eftis and Liebowitz, 1972). 
The appropriate stress function is 

(a) 
2c 

Z(zi)--
1 

VWc/z,)" 
1 (12) 

where Z\ is the complex variable in the microcrack coordinate 
system. The microcrack stress field in the microcrack coor
dinate system can be expressed as 

ff„ = ^[2ImZ + ̂ iReZ„] + / j tReZ-^ ImZ. J (13a) 

ff22 = 'i[-.)'iReZ,J + f2[ReZ + .y1ImZ,J (136) 

al2 = tl[ReZ-yilmZ,z] + t2[-ylReZ,z] (13c) 

where tx is the shear component and t2 is the normal component 
of traction t on the microcrack surface, Zn is the first derivative 
of Z with respect to z,, and Im and Re indicate the imaginary 
part and the real part of a complex number, respectively. 

Further simplification of the average traction method leads 
to another approximation method involving the use of a point 
representation of microcracks. In this approach, the traction 
on a microcrack is simply computed at the microcrack center. 
This approximation approach has been used in previous dis
crete modeling of microcrack shielding (Hoagland and Em
bury, 1980; Rose, 1986b; Bowling, et al., 1987). 

3 The Approximation Method by Kachanov and Mon-

tagut 
Kachanov and Montagut (1986) used an approximation 

method to consider a semi-infinite crack and an array of mi
crocracks. This method is based on the superposition technique 
and the ideas of self-consistency applied to the average trac
tions on individual cracks (or microcracks in the case of in
teraction of a macrocrack with M microcracks). The stress 
field was represented as a superposition: 

M 

a(x) = K1(T1(x) + KlIadx)+^l(ri(x) (14) 
i = i 

where a, and an are the modes I and II asymptotic crack-tip 
fields given in Eq. (2), respectively, and <r,(x) is the stress field 
of /th microcrack loaded by average traction < t ,> . The trac
tion is induced along the microcrack line by other microcracks 
and the macrocrack stress field, and the average traction is 
given by 

<t,> =tf/n1-<tf/>/+-fr«n,-<"//>/+ 2 Aw<t*> (15) 
k 

where n, is the unit normal of /th microcrack, <<r/>,- and <<r//>,-
are the average near-tip stress fields along the microcrack line, 
{tk)j is the average traction on the microcracks, and Aki is the 
transmission factor (the average traction induced on /th mi
crocrack by kth microcrack subject to unit traction). 

There are M vectorial unknowns, <t,->, and two unknown 
scalars, Ki and Ku. With two additional conditions charac
terizing the effects of microcracks on the stress intensity of 
the macrocrack tip, 

So - M 

and 

Kn—Kfr- S «#)12«)#. (16*) 

macrocrack microcrack 

(b) 

J H 
Fig. 2 Microcrack configurations used to evaluate the approximation 
methods 

Table 1 Comparison of the results of the stress intensity by the nu
merical iterative method and the analytical solution 

L/2c 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

Numeric 

0.6497 

0.3859 
0.2729 
0.2087 
0.1671 
0.1379 
0.1164 
0.0999 
0.0870 
0.0765 

(Kj-KTVKr 

:al Analytical 

0.6539 
0.3873 

0.2737 
0.2092 

0.1675 
0.1382 
0.1166 
0.1001 
0.0871 
0.0766 

Error (%) 

0.65 
0.40 
0.31 
0.26 
0.23 
0.21 
0.20 
0.19 
0.17 
0.17 

all of the unknowns can be evaluated. In Eq. (16), K; and Ku 
are the stress intensities at the macrocrack tip; Kf and Kf are 
the applied stress intensities, and o^fj^f) is the stress of /th 
microcrack evaluated along the macrocrack line. 

4 Verification of the Numerical Solution 

The numerical solution (based upon the exact formulation) 
obtained by the iterative method for a collinear microcrack of 
length 2c ahead of a macrocrack with an associated applied 
stress intensity of Kf (Fig. 2(a)) is verified by comparing it to 
the analytical solution presented by Rubinstein (1985) and Rose 
(1986a). We consider a range of distances, L, between the 
microcrack tip and the macrocrack tip from 0.05 to 0.5, that 
is, the macrocrack-microcrack tip distance is 1/20 to 1/2 of 
the microcrack length. The stress intensity at the macrocrack 
tip and the stress field at various points were computed. The 
results of the stress intensity are compared with values com
puted from the analytical solution in Table 1. The maximum 
relative error in the range considered is 0.65 percent which is 
likely due to numerical computation (see Table 1). Better results 
can be obtained by refinement of the numerical computation. 

5 Evaluation of Approximation Methods 
The approximation methods: the iterative method with av

erage traction (iterative-average), the iterative method with 
point representation of microcracks (iterative-point) and the 
approximation method by Kachanov and Montagut (1986) are 
compared with the numerical solution for certain microcrack 
orientations. The main emphasis is placed upon the mode I 
stress intensity, as mode I shielding is of particular interest. 

To see the range within which the approximation methods 
are applicable, the distance between the macrocrack and mi
crocrack is varied and the results obtained are compared. The 
two configurations considered are a collinear microcrack (Fig. 
2(a)) and a horizontal microcrack parallel to the macrocrack 
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1.2 

1.0 

, 0.8 

W 
w 0.4 

0.2 

0.0 

Collinear Microcrack Center: 
x/2c=(c+L)/2c, y/2c=0 

Kachanov and Montagut (1986) 
• Numerical 
• Iterative-average traction 
• Iterative-point representation 

Table 2 Range of applicability for approximation methods 

0.0 0.1 0.2 0.3 0.4 0.5 

L/2c 
Fig. 3 Comparison of the change in the mode I stress intensity as a 
function of the normalized macrocrack-microcrack distance computed 
using the numerical solution, iterative-average traction, iterative-point 
representation, and the approximation method by Kachanov and Mon
tagut for the collinear microcrack shown in Fig. 2(a). 

0.0 

-0.5 

s 

-1.0 

-1.5 

• Kachanov and Montagut (1986)' 
• Iterative-average traction 
Iterative-point representation 
Numerical 

Horizontal Microcrack Center: 
x/2c=0, y/2c=H/2c 

0.0 0.2 0.4 0.6 0.8 1.0 

H/2c 
Fig. 4 Comparison of the change in the mode I stress intensity as a 
function of the normalized macrocrack-microcrack distance computed 
using the numerical solution, iterative-average traction, iterative-point 
representation, and the approximation method by Kachanov and Mon
tagut for the horizontal microcrack shown in Fig. 2(b) 

and centered just above the macrocrack tip (Fig. 2(b)). Com
parisons of the results are shown in Figs. 3 and 4 for the 
collinear microcrack and the horizontal microcrack cases, re
spectively. For the collinear microcrack as shown in Fig. 3, 
the results obtained by the approximation method by Kachanov 
and Montagut represent overestimates of antishielding, while 
those by the iterative-average traction method and the iterative-
point representation method represent underestimates of an
tishielding. For the horizontal microcrack as shown in Fig. 4, 

Approximation 
Method 

Applicable Range 
Collinear Horizontal 
microcrack microcrack 

Iterative-average 
Iterative-point 
Kachanov-Montagut 

L/2c > 0.1 
IV2c > 0.3 
L/2c > 0.2 

H/2c > 0.3 
H72c > 0.9 
H/2c>1.0 

the results obtained by the approximation method by 
Kachanova and Montagut represent undererstiamtes of shield
ing, while those by the iterative-point representation method 
represent overestimates of shielding. In both cases, the results 
obtained by the iterative-average traction method are closest 
to the numerical solution based upon the exact formulation. 
If we use the conventional definition of the relative error for 
the normalized change in stress intensity (K;-ICj°)/KT, and 
arbitrarily determine that errors of ten percent or less are 
reasonable for the applicability of the approximation methods, 
we can compare the range within which the approximation 
methods are applicable for mode I stress intensities (see Table 
2). 

6 Discussion 
In all the cases, the solutions obtained by approximation 

methods deviate from the exact solution as the distance between 
the macrocrack and microcrack decreases (Figs. 3 and 4). This 
is unfortunate because the microcracks nearest to the macro
crack tip have the greatest effects on the stress intensity of the 
macrocrack tip. 

From Table 2, we can see that the iterative-average traction 
method offers the best accuracy among the three approxi
mation methods discussed. With this method, the defined low
est range is L/2c = 0.1 for the collinear microcrack case, and 
H/2c = 0.3 for the horizontal microcrack case. 

In the case of a collinear microcrack, the iterative method 
with point representation of microcracks underestimates the 
effect of the microcrack on the macrocrack; as a result, it 
underestimates antishielding (Fig. 3). In the case of a horizontal 
microcarck, it overestimates shielding (Fig. 4). Therefore, it 
tends to overestimate shielding. 

In the case of the horizontal microcrack, the defined lower 
limit of applicability for the approximation method by 
Kachanov and Montagut is unexpectedly high. On the other 
hand, the defined lower limit of applicability is as low as L/ 
2c = 0.2 for the case of collinear microcrack. This favorable 
configuration of a collinear microcrack was used as the test 
case for the approximation method by Kachanov and Mon
tagut (1986), and it was concluded that the error remains small 
for LI2c as small as 0.1 to 0.2. This conclusion does not hold 
for the case of the horizontal microcrack. 

In the approximation method by Kachanov and Montagut, 
two approximations are involved in solving for the macrocrack-
microcrack interaction. The first is the use of the average 
traction induced on a microcrack. The second approximation 
is the use of the near-tip stress field in computing the super
posed stress field (Eq. (14)). Consider the strong interaction 
of a macrocrack with a microcrack close to the macrocrack 
tip. In this case, the superposed stress field obtained by the 
second approximation is only good for I x I « I x,„ I, where x,„ 
is the coordinate of the microcrack. Consequently, the use of 
this approximation in computing the traction on the micro
crack is not good because I x I = I \,„ I. 

In the particular configuration of collinear microcrack in 
the Kachanov-Montagut treatment, the use of the average trac
tion would results in an underestimate for the change in the 
stress intensity. On the other hand, the use of the increased 
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stress intensity value at the macrocrack tip (K,) to compute 
the effect of the macrocrack on the microcrack (refer to Eq. 
(14)) leads to an overestimate. This overestimate is, in part, 
compensated by the underestimate due to the use of the average 
traction. With this compensation, the results obtained by the 
approximation method by Kachanov and Montagut method 
turn out to be good for L/2c as low as 0.1 to 0.2, as shown 
in Fig. 3. 

For the horizontal microcrack in the Kachanov-Montagut 
treatment, the use of the average traction underestimates the 
change in the stress intensity. At the same time, the use of the 
reduced stress intensity value at the macrocrack tip (Kj) to 
compute the effect of macrocrack on the microcrack also re
sults in an underestimate. With this compounded underesti
mate, the results obtained by this method deviate from the 
exact solution quickly as H/2c becomes small as shown in Fig. 
4. We have observed that, in many cases, the approximation 
method by Kachanov and Montagut results in overestimates 
of antishielding, and underestimates of shielding, a feature 
also observed by other researchers (Rubinstein and Choi, 1988). 
This could explain, in part, why Kachanov and Montagut did 
not predict appreciable shielding from microcracks (Kachanov 
and Montagut, 1986; Montagut and Kachanov, 1988). 

7 Summary 
We have compared the results by the approximation methods 

with the numerical solution based upon the exact formulation 
for a number of cases. The following summary can be made: 
(1) Approximation methods should be applied with caution 
when the crack distance is small. Outside the applicable range, 
the results are misleading. 
(2) Among the three approximation methods discussed, the 
iterative method with average tractions generally offers the 
best results. 
(3) In many cases, the approximation method by Kachanov 
and Montagut overestimates antishielding, and underestimates 
shielding when the macrocrack-microcrack distance is small. 
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An Interlaminar Shear Stress 
Continuity Theory for Both Thin 
and Thick Composite Laminates 
The interlaminar shear stress plays a very important role in the damage of composite 
laminates. With higher interlaminar shear stress, delamination can easily occur on 
the composite interface. In order to calculate the interlaminar shear stress, a laminate 
theory, which accounts for both the interlaminar shear stress continuity and the 
transverse shear deformation, was presented in this study. Verification of the theory 
was performed by comparing the present theory with Pagano's elasticity analysis. 
It was found that the present theory was able to give excellent results for both stresses 
and displacements. More importantly, the interlaminar shear stress can be presented 
directly from the constitutive equations instead of being recovered from the equi
librium equations. 

Introduction 
Fiber-reinforced polymer-matrix composite materials have 

high in-plane strength and low density. They are excellent 
materials for high-performance structures. Classical laminate 
theory has been used in the stress analysis for composite struc
tures. However, it is only accurate for composite laminates 
with very large aspect ratio, such as those of thin plates. In 
order to calculate the correct stresses in thick composite plates, 
transverse shear deformation should be considered. Beside the 
laminate thickness, there is another reason to account for the 
shear deformation in the composite analysis. Due to the low 
shear modulus of polymer matrices, the transverse shear de
formation of composite materials is more pronounced than 
that of conventional metals. 

Although the composite materials have high in-plane 
strength, they are very vulnerable in the thickness direction. 
Due to the weak bonding between the composite layers, de
lamination can easily occur on the composite interface. Two 
types of delamination, namely edge delamination (Pagano and 
Pipes, 1973) and central delamination (Liu, 1988), have been 
widely investigated. Both of them can be viewed as a result of 
interlaminar stress concentration caused by material property 
mismatch in the thickness direction. It has also been verified 
by many investigators that delamination has significant effect 
on the structural integrity. For example, the compressive 
strength of a composite laminate can be reduced considerably 
if there is delamination. Consequently, the strength in the 
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thickness direction is as important as that in the in-plane di
rection. The study of interlaminar stresses has then become 
an important issue in the composite analysis. 

Many techniques have been developed for composite stress 
analysis. A comprehensive review can be found in an article 
authored by Kapania and Raciti (1989). Among the different 
techniques reported, the one receives the most attention in the 
recent years is the so-called high-order shear deformation the
ory. Many high-order theories, such as those presented by 
Yang, Norris, and Stavsky (1966), Nelson and Lorch (1974), 
Reissner (1975), Lo, Christensen, and Wu (1977), and Reddy 
(1984) are available for composite analysis. However, because 
of the nature of two-dimensional approach, the interlaminar 
stresses from the high-order theories are not single-valued. A 
post-analysis processing is required to find the correct inter
laminar stresses. Lo, Christensen, and Wu (1978) used equi
librium equations in conjunction with in-plane stresses to 
recover the interlaminar stresses. Although this technique may 
be able to give accurate results, it is tedious and not suitable 
for structures with complex configurations. 

In order to consider the continuity of the interlaminar stresses 
across the interface, the composite laminates have to be mod
eled by individual layers. Ambartsumyan (1970) was among 
the earliest to present a technique with the transverse shear 
stress continuity conditions across the composite interface. 
Based on the parabolic distribution for the transverse shear 
stresses in a composite layer, he presented a shear deformation 
theory for the composite analysis. His technique was refined 
by several other investigators. 

Another stress-based technique, which includes the inter
laminar stress continuity, was presented by Mau, Tong, and 
Pian (1972). This technique was named the hybrid-stress finite 
element method. Spilker (1980) and many other investigators 
extended this technique for studies with high-order stress as
sumptions. Pagano (1978) also assumed a stress distribution 
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in each layer. He derived the governing equations with the use 
of a variational approach. The continuity of transverse stresses 
was satisfied in his formulation. 

Instead of assuming the stresses, DiSciuva (1985) presented 
a displacement field which had piecewise linear continuity 
through the thickness for in-plane displacements. The out-of-
plane displacement, however, was assumed to be constant 
through the thickness. A variational method was used to for
mulate the governing equations. Due to the low order of the 
assumed displacement field, the transverse shear stresses were 
constant through the thickness. Similar approach was also 
given by Chou and Carleone (1973). 

A more general theory for composite analysis based on a 
layer-wise displacement field was presented by Reddy (1987) 
and Barbero and Reddy (1990). Reddy demonstrated that most 
of the displacement-based high-order theories could be summed 
up by a so-called Generalized Laminated Plate Theory (GLPT). 
Barbero and Reddy (1989) also applied the GLPT to study 
delamination buckling. Srinivas (1973) and Rehfield and Val-
isety (1983) introduced a multilayered technique to generalize 
their plate theory for composite laminates. Hinrichensen and 
Palazotto (1986) presented a nonlinear finite element analysis 
for thick composite laminates by using cubic spline functions 
to model the deformation through the thickness. Since all these 
studies were focused on the transverse deflection and in-plane 
stresses and deformation, the interlaminar stress continuity 
conditions were not considered. 

Toledano and Murakami (1987) used a similar displacement 
field as DiSciuva's in their analysis. The transverse shear strains 
were constant within each layer. However, they also assumed 
quadratic transverse shear stress distributions across each in
dividual layer. Reissner's mixed variational principle (Reissner, 
1984) was used in their formulation together with the transverse 
shear stress continuity conditions. They concluded that this 
technique was valid for improving the in-plane deformation 
in the composite laminates with transverse shear effect. 

In studying the composite delamination, it is important to 
have an accurate theory for interlaminar stress calculation. In 
view of the advantages and disadvantages of the techniques 
reported, it was concluded that a useful theory should satisfy 
the continuity requirements for both displacements and inter
laminar stresses across the composite interface. The interlam
inar stresses can then be obtained directly from the constitutive 
equations instead of from the equilibrium equations. Besides, 
in deriving the governing equations, the formulation should 
be variational consistent (Reddy, 1984). It then can be extended 
for finite element formulation and be used for composite struc
tures with more complex configurations. 

Based on the above understanding, an interlaminar shear 
stress continuity theory with a refined displacement field mod
ified from Reddy's layer-wise theory (Reddy, 1987) is devel
oped. However, both the nodal displacements and rotations 
are used as independent variables. Being different from Hin
richensen and Palazotto's approach (1986), the nodal rotations 
are not required to be continuous across the composite inter
face. The proposed theory can be used for both thin and thick 
laminate analysis. In addition, the theory can be employed to 
calculate interlaminar shear stresses directly from the consti
tutive equations. In order to verify the accuracy of the theory, 
numerical results from the closed-form solutions are compared 
with those from Pagano's elasticity analysis (Pagano, 1969). 

Displacement Field 
A composite laminate composed of n laminae as shown in 

Fig. 1 is considered. A Cartesian coordinate system is chosen 
such that the middle surface of the laminate occupies a domain 
Q, in the x-y plane while the z-axis is normal to this plane. The 
displacements at a generic point (x, y, z) in the laminate are 
assumed to be of the form 

U.., ,V,. , , i , . | 

Ui-iYi-i.Zi-i 

Uj<.Vk, z k 

(u. v, w) 

U i . V i . z , 

U0.V0. z 0 

layer (n) 

/ 

S2i, T 2 i 

S 2i-l. T2i-1 

Sa-2, T a - ^ / layer (i) 

S 2i-3, J-'ii-3 

^ 2 k . T 2 k 
middle surface Q. 

S2k-i,T2k-i layer (k) 

s , T 2 . ' 2 

S i . T , 

So . Tp layer (1) 

Fig. 1 Nodal variables and the coordinate system 

«i (x,y,z) =u{x,y) + U(x,y,z), 

u2(x,y,z) = v(x,y) + V(x,y,z), 

u}(x,y,z) = w(x,y), (1) 

which is the same as the one given by Reddy (1987). u, v, and 
w are displacements on the middle surface while U and V are 
in the individual layer. The assumption of constant u3 through 
the thickness is justified in view of the relatively small mag
nitude of transverse normal stress in comparison with other 
stresses (Ambartsumyan, 1970; Vinson and Sierakowski, 1986). 
Accordingly, oz is neglected in this study. However, this ar
gument is questionable under some circumstances (Pagano and 
Soni, 1989). 

In order to include the interlaminar shear stress continuity 
conditions in the analysis, the in-plane displacements are as
sumed for layer (/) as follows: 

U(x,y,z) = £/,_ i (x,y)4>\n (z) + U,(xy)4>P (z) 

+ S2i-2(x,y)<t>\i){z)+S2i-dx,y)tin(.z) 

V(x,y,z) = V,-^(x,y)'t>r (z) + Vi(x,y)<t>r (z) 

+ T2i_2(x,y)4>\i){z) + Tli^{{x,y)^i){z), (2) 

where ^ j ' 1 are Hermite cubic shape functions which can be 
expressed as 

<t>[i) = l-n(.z-zl-i)/h&2+2[{z-zi-i)/h,]1 

^ = 3 [(z - zi-1) /hi]2 -IHz-Zi-i) /hi)3 

frl°=U-2l-l)[l- (z-«,_,)/A,r 
Zi-\<Z<Zi, 

/4° = (z- -Zi-xfiiz-Zi-^/hi-W/hi 

(3) 
j,<" = 0|') = ^ ' - ) = = 0y) = o z<Zj_l or z>Zi. 

The superscript (/) represents for the layer number, i.e., the 
/th layer of the composite laminate, and hi is the thickness of 
the layer. As shown in Fig. 1, {/,• and F, are the node values 
of U and V at the point {x, y, Zi) between layers (/) and (i + 
1). U, and Vj vanish on the middle surface, which is located 
at the position z = zk. However, S's and Vs are the first 
derivatives of U and V with respect to z-axis, respectively. 
More specifically, S2i and T2i represent the node values of 
dU/dz and dV/dz at the point (x, y, z,) in layer (i + 1) while 
S2i_i and T2i-i are at the same point but in layer (/'). Figure 
1 depicts the variables. It is also noted that although the in
terlaminar shear stresses are continuous across the interface, 
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U„, V„, z„ 

Un-i.V„-i.z„.| 

z 

"S„. . T„., layer (n) 

Ui. Vi, z . 

Ui-iVi-LZi. 

(u, v, w ) ^ k 

Uk=V k ,=0 

Si-i, T n layer (i) 

layer (k) 

middle surface 

free condition on both top and bottom surfaces is also ob
served, i.e., 

Tyz = 0, (8) 

at z = ±h/2, where h is the total thickness of the composite 
laminate. With the same fashion as used in obtaining Eq. (7)) 

the first derivatives at the top and bottom surfaces can also 
be achieved as follows: 

: S j » _ i 

: Ty.„ _ 1 — — " 

dw 

"Ox' 

dw 
(9) 

Ui.Vi, z, 

Uo.Vo. z„ 
layer (1) 

Fig. 2 Reduced variables 

the interlaminar shear strains are not. Consequently, S2l and 
T2i are not the same as S2/-i and T2i-\. The total number of 
the assumed variables is then equal to 6« + 3. 

As a summary, the required continuity conditions on the 
composite interface are displacements and interlaminar shear 
stresses. The former is satisfied automatically with the use of 
a global coordinate system while the latter can be expressed 
as follows: 

lim r « , limrg+1» l imr» + 1 ) 

= lim T, '/') i=l,2,...,n-l. (4) 

Therefore, it is concluded from Eq. (7) and (9) that it only 
requires four variables, Uh V„ S2h and T2h to express each 
nodal point. Consequently, the total number of the independ
ent variables is reduced to An + 1. The reduced variables are 
assigned new notation, i.e., Sj and 7}, and are shown in Fig. 
2. The displacement field can then be written as follows: 

n n-1 

ux{x,y,z) = u(x,y) + J] U^ + Y, §M 
7 = 0 7=1 

Kw-h A < I > -

u2(x,y,z) = v(x,y) + J] vfij + E fM 
7 = 0 7=1 

n - i / n ( 7 + 1 

•sr-i / ^44 
2 J \ UQj-W . ( • ) -

i,i") 

/>I"> 

dw 

~dx 

dw 

Ty 

If the composite laminate of interest is of cross-ply sequence, 
the constitutive equations for the /th layer become (Vinson 
and Sierakowski, 1986) 

Ox 

ay 

°z 
Sxy. 

(0 

_ 

Qn 
Qn 
Qn 
0 

Qn 
Qn 
G23 
0 

G,3 
G23 

e3 3 0 

0 
0 
0 

2Q66J 

U) e.v 
ey 

ez 

.^xy. 

u3(x,y,z) = w(x,y). (10) 

The shape functions in the global coordinate system are given 
by the following equations: 

\ 0i° layer (/) 

others 

(0 
2Q44 0 

0 2Q55 

(/') 
(5) 

In addition, for linear strain-displacement relations, the fol
lowing equations can be employed: 

3«! dth 
~~ dz 

= 0, 
_ 1 (du\ du2 

6xy = 2\dy~ + ^ 

l/dui dui\ 
~~2\dz dx)' 

1 jdu2 du3 

'2\dz~ + ~dy 
(6) 

Substituting Eqs. (1) and (2) into Eqs. (6) and (5), the stresses 
can be expressed in terms of displacements. With the use of 
Eq. (4), S2,-_i and T2j-i can be verified to be functions of S2i 
and T2h respectively, i.e., 

S?i_i — 
Q: (/+!) 

Sdss 
S2,+ 

r)</+|) 

<eI44 
Tv + 

^ 4 4 
n i l ) 

• 1 
dw 
Tx 

dw 

a? (7) 

where ;' = 1 ,2 , . . . 1. In this study, the shear traction-

T7 i ^ ° 

*1= \ er 
Q55 

U) 

n<'> 

°>- { f 

(.!'') 

M" j = i 

J = i 

layer (/) 

others 

layer (;') 

others 

layer (1) 
others (11) 

Equilibrium Equations 

The principle of virtual displacement is used to derive the 
equilibrium equations and the corresponding boundary con
ditions. The principle of virtual displacement can be stated as 
follows: 

504 / Vol. 59, SEPTEMBER 1992 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.21. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



'xyOExy (o&x + aybey + azbez + 2TX 

+ 2Txzbexz + 2Tyzbeyz)dAdz-\ Pzbu3dA=0. (12) 

Substituting Eq. (10) into Eq. (6), the strains can be expressed 
in terms of displacement variables. Then, combining the strain 
with Eq. (5), substituting them into Eq. (12), and after inte
grating by parts and collecting similar terms, the governing 
equations become as follows: 

bu: A ^ + / V w = 0 
5v: Nxy)X + Ny_y = 0 

bW. Qx,x+Qy,y-\x,x A* • \.yy + Vx.x + ny,y + Pz = ° 

bUf. Nix + Nj
xy,y-QJ

x = 0 ./ = 0,l n;j*k 
bVf. Nj

xy,x + NJ
y,y-Qy = 0 j = 0,l,...,n;j*k 

bS/. Mix + M\xy:y-R
J
x = 0 y = l , 2 n-\ 

67}: M^ + M^-R^O y = l , 2 , . . . , « - l . 

(13) 

The essential and natural boundary conditions can also be 
obtained. They are listed in the following two columns: 

Essential 
Boundary 
Conditions: 

u 

V 

w 

dw 

~dx 

dw 

Yy 

Natural 
Boundary Conditions: 

Nxnx + Nxyny 

Nxynx + Nyny 

( Qx + % - AX,X - - \Xyj 

+ ( Qy + Vy-\,y~2 ^ 

^xHx + ~ ^xyny 

- \Xyllx + \ylty 

Sj 

fj 

NJ
xnx + NJ

xyny j = 0,\,...,n; j^k 

NJ
xynx + NJ

yny j = 0,l,...,n; j^k 

M{nx + M{xyny j=\,2 n~\; 

M^y^ + M^riy, 7=1,2 n-\. (14) 

The resultant forces and moments in Eq. (14) can also be 
defined as follows: 

Ml 

(Nx,Ny,Nxy) (ox,ay,Txy)dz 
> -h/2 

Ml 

(Qx,Qy) = (Txz,Tyz)dz 
•'-h/2 

Ml 

(NJ
x,N

J
y,N

J
xy) = (ox,Oy,TXy)&dz 

J -hn h/2 

- I 

Material properties: Ej = 25 X106psi, E2 = 10 6 ps i , 

G12 = .5x 106psi, G22 = .2 x 10 6 psi, and V!2 = V22 =.25 

Fig. 3 Cylindrical bending of an orthotopic laminate 

n-i /nU+D \ 

(Qi'Q>)=LATxz^'Tyz^r 
(RJ

X,RJy) = J 

(v 

Ml 

' -h/2 
T"WT"idr)dz- (15) 

Solutions for Cross-Ply Laminates 
In order to test the accuracy of the present theory, the cy

lindrical bending of an infinitely long strip examined by Pagano 
(1969) was studied. The displacement field can be simplified 
to be functions of x and z only. Figure 3 shows the configu
ration of the laminate. Therefore, all the derivatives with re
spect to y in Eqs. (13) and (14) vanish. By combining Eq. (15) 
with Eq. (13) along with the stresses and strains expressed by 
the reduced independent variables, the final governing equa
tions can be given in terms of the independent variables, i.e., 

AuU,xx+YjBinui,xx+ 2 CuSm,xx + yiWyXXX = 0 
I OT=I 

n 

(Ass + AS5) w „ + S lB^ + Wv) VM 

i*k 

n-\ _ 

+ 2 (C?5 + CT5)SmtX+ (72 + 72)w,„ 
m=l 

n n- 1 

" (A 1 \U,xxx + 2^1 B 11 Uj>xxx + 2_i C 1 lSm,xxx 
m=\ 

+ JiW,xxxx)+Pz=0 (16) 

J=o 
j*k 

(MiMyMixyMixy) = {Ox^Juay^J2,Txy^J
uTxy^i)dz fi(lM„+V (D^UJ^-D^UJ) 

(A, 

Ml 

,\y,\Xy)= \ (Ox^i^y^l^ykl+T^ 
J -hn 

j*k 

)dz 

i e rtf-rt 0)_^(«) 

+ YJ (.EftSj^-E'SSj) 1=0,1,...,n 

+ B'nwiXXX-(Bl
55+Bl

55)w_x = 0 l*k 
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C i i ",xv + S (Ei\ UJja - EJU Uj) 
n-1 i»z/ 

+ J ] ( f M ^ - F s s ^ + C i i W ^ - (CjJ+C55)wiX = 0 

' t=\,2, — ,n~l 

w h e r e t h e ^ , , , ^ ' , , S-j,, Cf,, C',"„ £>'/,, 4™, ^57, T1M55, ^ 5 5 , 
5 i 5 , 5 i 5 , C S , C?5, D'is, E'£, F'g; 72,7i. and y2 are coefficients 
of laminate properties. They can be expressed as follows: 

n ~ 1 /»z/ n - 1 p z; 

/lii = S ] Gii'1*, B>'i = S | Q\Wdz, 
/= i z / - i 1=1 * l ' - l 

fl-1 pZ; 

Ci". = S t ' QW*Tdz 7. = E ( ' Gli'M*, 
/ = 1 * / - l 1=1 « / - 1 

/ = i « / - i 

» ~ 1 fZj 

1=1 * i - l 

« - l pZ; 

; = i J « ; - i 1=1 J z / - i 

? ' = S f Qfi'̂ Vfe, -4n =Ti, # u : 

1 = 1 " « / - 1 

« - l (•«/ n - l fZj 

i '=l * i - l 

/ i - l r>z, 

i'=l * i - l 

c 
1=1 J ^ i - i 

E f Qi'A?*. 72=2 P Q '̂x?̂  
1=1 " V l i=l V - l 

^55=72, T. = 2 J Qi'Afcfe, yi=y\\ QttWjz 
1=1 " V i 

/=1 * / - l 

1=1 • V l 

^ 5 = 2 ] G^*!Z*^. 4n
5'=i;J' ei?*>f^ 

1=1 «1-1 

F " = E f' GM^s îVz. (I?) 
1=1 * / - l 

Since the composite laminate is simply supported at x = 0 
and x = L, the boundary conditions are as follows: 

w(0) = w(L), = 0; N,(0) = N x ( L ) = 0 ; \*(0) = M L ) = 0 

7V™(0) = Ar?(L)=0; w = 0, l , . . . ,«; /77^/t 

Af?(0) = M ? ( L ) = 0 ; /n = l,2 « - l . (18) 

The loading Pz is assumed to be a sinusoidal distribution, 

P , = P0sin(/3x), 0 = - (19) 

In order to satisfy the boundary conditions listed in Eq. (18), 
the following displacements are assumed: 

u = u cos(/3x), w = wsin(/3x) 

l/y = UyCos(/3x) j = 0,l,...,n;j*k 

Sj = SjCOs((3x) y = l , 2 , . . . , « - l (20) 

where u, w, Uy and Sy are coefficients to be determined. It is 
obvious that w satisfies the boundary conditions, i.e., w(0) = 
w(L) = 0. The satisfaction of the remaining boundary con
ditions can also be verified by expressing Eq. (15) in terms of 
displacements. After substituting Eq. (20) into Eq. (15), it can 
be found that the resultants in Eq. (18) are of sine functions. 
Therefore, they can satisfy the prescribed boundary conditions. 
Thus, Eq. (20) can be a set of solution to the governing equa
tions for simply-supported orthotropic laminate under sinu
soidal loading. By substituting Eq. (20) into Eq, (16), the 
coefficients u, w, Uy, and Sy can be determined and a closed-
form solution is obtained. 

Results and Discussions 

In order to verify the accuracy of the new theory in the 
composite stress analysis, Pagano's studies (Pagano, 1969) on 
the laminates, i.e., [0], [90/0], and [0/90/0], were investigated. 
The coordinate system of the laminates and the material con
stants can be found in Fig. 3. The numerical results are sum-

5.0-

4.0-

W 3.0-

2.0-

0.0-
310 

^ ' M l 
60 80 100 200 

Fig. 4 Normalized maximum deflection as a function of aspect ratio S 
in logarithmic scale 
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marized in the following sections with the same nondimensional 
terms used by Pagano, i.e., 

_ rxz(Q,z) _ £Y«,((U) 
. T x z - , U=-

ax[^Z 

P0 hP0 

w = - p^ 
z = f. (21) 

h 

1 Displacement in the Thickness Direction. The displace
ments in the thickness direction, w, in the middle of the [0], 
[90/0], and [0/90/0] laminates as a function of aspect ratio (S 
= L/h) are shown in Fig. 4. Apparently, the results from the 
present theory agree quite well with those from the exact so
lution in both large and small aspect ratios. In order to further 
compare the results from both techniques, the numerical so
lutions for all three types of cross-ply beam are listed in Table 
1. In this study three different values of S, i.e., 4, 20, and 100, 
which represent for thick, intermediate, and thin laminates, 
were presented. Besides, three different layer numbers were 

Table 1 Comparison and numerical results between Pagano's analysis 
and present theory 

[ 0 ] 

[ 0 / 9 0 ] 

[ 0 / 9 0 / 0 ) 

S 

4 

20 

100 

4 

20 

100 

4 

20 

100 

Pagano's 
solution 

1.9490 

.5519 

.4940 

4.6953 

2.7027 

2.6222 

2.8868 

.6172 

.5140 

Present theory 
2-Iayer 4-Iayer 6-Iayer 

1.9672 

.5523 

.4940 

4.7773 

2.7069 

2.6230 

1.9659 

.5523 

.4940 

4.7812 

2.7069, 

2.6220 

1.9659 

.5523 

.4940 

4.7812 

2.7069 

2.6220 

2.9098 

.6176 

.5140 

investigated to study the effect of layer number on the accu
racy. The results in Table 1 conclude that the present theory 
gives excellent results of w in all three types of lamination, 
although the results in the laminates with higher aspect ratio 
seem to be more accurate. However, the increase in the layer 
number does not seem to cause any significant effect on the 
results. 

Exact solution 

• Present theory 

S = 4 

— Exact solution 
• Present theory 

^ 

- 2 0 - 1 0 

— Exact solution 

o Present theory 

S = 1 0 

— Exact solution 
• Present theory 
S = 1 0 

Fig. 5 Comparison of u between Pagano's analysis and present theory Fig. 6 Comparison of <rx between Pagano's analysis and present theory 
in the [0/90/0] laminate in the [0/90/0] laminate 
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Fig. 7 Comparison of ?„, between Pagano's analysis and present theory 
in the [0/90/0] laminate 
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Exact solution 
Present theory 

0.5-, 

I ' I ' I K\ 1 ' I ' I ' I 
-70 - 5 0 - 3 0 -=40 10 30 50 70 

Fig. 8 Comparison of u between Pagano's analysis and present theory 
in the [90/0] laminate 

— Exact solution 
® Present theory 

S=10 

0.5-, 0.5- , 

S=4 
Present theory 
Exact solution 

-200 

S=10 
Present theory 
Exact solution 

Fig. 9 Comparison of ax between Pagano's analysis and present theory 
in the [90/0] laminate 

— Exact solution 
» Present theory 

S=4 

0.5 
— Exact solution 
9 Present theory 

Fig. 10 Comparison of rx, between Pagano's analysis and present the
ory in the [90/0] laminate 

2 Symmetric Laminate [0/90/0]. Except the [0] laminate, 
another symmetric laminate [0/90/0] with 5 = 4 and S = 10 
were also investigated. The results of in-plane displacement, 
in-plane stress, and interlaminar shear stress for S = 4 and S 
= 10 from 6-layer analysis are shown in Figs. 5, 6, and 7, 
respectively. Excellent agreements between the present theory 
and the elasticity analysis can be found from the figures. How
ever, when close to the middle surface, the in-plane displace
ment of 5 = 4 has a pronounced difference between the two 
techniques. It is believed that this is due to the assumption of 
constant w in the present theory. In fact, just because of the 
constant displacement assumption, both the distributions of 
in-plane displacement and stress from the present theory are 
antisymmetric to the middle surface while the interlaminar 
shear stress symmetric. 

3 Asymmetric Laminate [90/0]. Both S = 4 and S = 10 
for an asymmetric laminate [90/0] were studied. Excellent re
sults were again concluded. The results are shown in Figs. 8, 
9, and 10 for in-plane displacement, in-plane stress, and in
terlaminar shear stress. 

Conclusions 
Excellent results were obtained from the present theory. 

Although the degree-of-freedom in this present study is high, 
it does not require too many layers in the thickness direction 
to have accurate solutions. Due to the consideration of inter
laminar shear stress continuity, the interlaminar shear stress 
in the present analysis can be obtained directly from the con
stitutive equations. No post-analysis processing, which is usu
ally based on the equilibrium equations, is required. Besides, 
the present theory can be easily extended for finite element 
formulation (Lee, Liu, and Lu) and can be used in various 
boundary value problems. However, it should be noted that 
the transverse normal strain, which is important under some 
circumstances, is neglected in the present theory. 
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The Influence of Inclusion Shape 
on the Overall Viscoelastic 
Behavior of Composites 
The Eshelby-Mori-Tanaka method is extended into the Laplace domain to examine 
the linearly viscoelastic behavior in two types of composite materials: a transversely 
isotropic one with aligned spheroidal inclusions and an isotropic one with randomly 
oriented inclusions. Though approximate in nature, the method offers both simplicity 
and versatility, with explicit results for the sphere, disk, and fiber reinforcements 
in the transformed domain. The results coincide with some exact solutions for the 
composite sphere and cylinder assemblage models and, with spherical voids or rigid 
inclusions, the effective shear property also lies between Christensen's bounds. 
Consistent with the known elastic behavior, the inverted creep compliances in the 
time domain indicate that, along the axial direction, aligned needles or fibers provide 
the most effective improvement for the creep resistance of the aligned composite, 
but that in the transverse plane the disk reinforcement is far superior. For the isotropic 
composite disks are always the most effective shape, whereas spheres are the poorest. 
Comparison with the experimental data for the axial creep strains of a glass/ED-6 
resin composite containing 54 percent of aligned fibers indicates that the theory is 
remarkably accurate in this case. 

1 Introduction 
Many polymer-matrix composites exhibit a linearly visco

elastic behavior, with an overall response dependent upon the 
shape, volume fraction, and geometrical arrangement of the 
inclusions. Directed towards this end, this paper is concerned 
with the development of a theoretical model which is capable 
of accounting for these three factors. For simplicity, both 
phases will be taken to be viscoelastically isotropic, and the 
shape of inclusions will be represented by a spheroid, with an 
aspect ratio (length to diameter ratio) a. This represents a broad 
range of inclusion shape, ranging from thin disks, to spheres, 
and all the way to needles or fibers. Two types of inclusion 
arrangement will be specifically considered here: one unidi-
rectionally aligned and the other randomly oriented. When the 
homogeneously dispersed inclusions are perfectly bonded with 
the matrix, without any void nucleation or growth, these two 
types of microgeometry will give rise to a transversely isotropic 
composite and an isotropic one, respectively. 

Motivated by the recent success in the application of Mori-
Tanaka's (1973) method in composite elasticity, this method 
will be extended into the viscoelastic domain to address the 
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stated issues. The elastic counterparts of these two problems 
have been previously investigated by Tandon and Weng (1984, 
86), where the aspect-ratio dependence of the five effective 
moduli of a transversely isotropic composite, and of the ef
fective bulk and shear moduli of an isotropic one have both 
been established. This method has been proven to be reliable 
in many selected cases. For instance, for a multiphase com
posite containing spherical inclusions (Weng, 1984), the iso
tropic moduli have been shown to coincide with Hashin-
Shtrikman's (1963) lower bounds if the matrix is the softest 
phase, and with their upper bounds if it is the hardest. If the 
matrix is neither of the two, the predicted moduli will always 
lie inside the bounds. For an aligned composite, Tandon and 
Weng's (1984) results have also been proven (Weng, 1990) to 
coincide with Walpole's (1969) exact solution when a — 0, 
and to coincide with Hill (1964) and Hashin's (1965) bounds 
when a — oo (see Zhao et al. 1989). Tandon and Weng's (1986) 
study on randomly oriented inclusions also shows that, as the 
aspect ratio of inclusions changes from 0 to oo, the predicted 
overall moduli will vary within the bounds with spheres and 
disks providing the opposite bounds. In a fiber-reinforced com
posite, if the cross-sectional aspect ratio of the fibers is allowed 
to change from a circular shape (the conventional fiber) to a 
thin ribbon, Zhao and Weng (1990) recently have shown that 
the transversely isotropic moduli of the two-phase composite 
will vary within the Hill (1964) and Hashin (1965) bounds, 
again with the circular fibers and thin ribbons (randomly ori
ented in the transverse plane) taking both ends of the bounds. 

It should be recognized, however, that under some special 
circumstances, such as rigid spheres or cylinders embedded in 
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an incompressible matrix (Christensen, 1990), a hybrid com
posite with two aligned but differently shaped inclusions (Dvo
rak, 1989; Qiu and Weng, 1990), and an isotropic composite 
containing randomly oriented anisotropic inclusions (Qiu and 
Weng, 1990), Mori-Tanaka's theory may be less reliable. Chris
tensen (1990) recently gave a critical examination of Mori-
Tanaka's structure and found that their use of Eshelby's (1957) 
single-inclusion solution in a finite-concentration problem to 
be questionable. This point was also recognized earlier by Luo 
and Weng (1987, 89), who sought to calculate Eshelby's type 
of S-tensor in a three-phase model (the so-called generalized 
self-consistent geometry) to modify Mori-Tanaka's theory; 
their findings, however, indicate that the effective bulk mod
ulus of a particle-reinforced composite, and the longitudinal 
Young's modulus, major Poisson's ratio, plane-strain bulk 
modulus, and axial shear modulus of a fiber-reinforced com
posite remain unchanged under this modification. When the 
matrix is compressible, the effective shear modulus and the 
transverse shear modulus of these two types of composites, 
respectively, differ from the original estimates only by a small 
amount. Christensen's recent assessment appears to support 
these findings when the matrix is a compressible phase, but, 
when the inclusions become rigid and the matrix is incom
pressible, the difference between Mori-Tanaka's prediction and 
the generalized self-consistent scheme—especially at high con
centration—can be substantial. The problem with the appli
cation of Mori-Tanaka's method to a hybrid composite arises 
from the possible asymmetry of the overall moduli tensor; this 
consequence was first pointed out by Dvorak (1989). Qiu and 
Weng recently gave a quantitative examination of its severity 
when one phase is circular fibers and the other is aligned 
spheroids. It turns out that, when the spheroids are thin disks, 
the asymmetry is the most pronounced, but it gradually de
creases with increasing aspect ratio and disappears when this 
second phase also becomes circular fibers. With regard to the 
composite with randomly oriented anisotropic inclusions, Qiu 
and Weng's (1990) calculations have indicated that the pre
dicted moduli may actually lie outside the Hashin-Shtrikman 
(1963) type bounds, as established by Walpole (1969). 

Thus, with caution, one may conclude that Mori-Tanaka's 
approach may be applied to some selected problems without 
ever violating the bounds. This is certainly true for the two 
types of composite to be considered here. In this connection, 
Frohlich and Sack (1946) have studied the viscoelastic behavior 
of a Newtonian fluid with dilute suspension of elastic, spherical 
inclusions, and Roscoe (1952) has developed a differential 
scheme to determine the effective viscosity with suspensions 
of rigid spheres. The first type involving aligned spheroidal 
inclusions has also been examined by Laws and McLaughlin 
(1978) using Hill (1965b,c) and Budiansky's (1965) self-con
sistent approach in elasticity and Stieltjes' convolution integral. 
The extension of Mori-Tanaka's method to the viscoelastic 
domain will be accomplished by means of Laplace transform 
through the correspondence principle (see also Schapery, 1974). 
Though it is appreciated that this principle will provide the 
exact viscoelastic property only when the corresponding exact 
elastic solutions exist (Hashin 1965, 66, 70a,b, Christensen 
1969, 79), the original Mori-Tanaka's theory in elasticity is an 
approximate one and its extension to the viscoelastic problem 
will remain approximate. The extended method is nonetheless 
simple and versatile enough to account for the influence of 
inclusion shape on the overall viscoelastic behavior of a two-
phase composite, and the results will coincide with the exact 
solutions or lie within the bounds when such informations are 
available. 

2 Constitutive Equations 

In the two-phase composite the inclusions will be referred 
to as phase 1 and the matrix as phase 0. The elastic bulk and 

shear moduli of the rth phase will be denoted by Kr and fir, 
respectively, and its volume fraction by cr. Both phases may 
be viscoelastic, and their constitutive equations can be written 
in either a differential or an integral form. For simplicity, their 
viscoelastic properties will be taken to be isotropic also, such 
that, in the differential form, the constitutive equations of the 
rth phase can be decomposed into the hydrostatic and the 
deviatoric components (see also Hashin, 1965, 1966), respec
tively, 

. Rr{D)a^ = Sr(D)ek
r
k\ 

Pr(D)a'i/
) = Qr(D)e'^\ (1) 

where P, Q, R, and S are operators and D represents the time 

differential D = —. 
dt 

The hereditary integral forms can be cast into 

<rff(0 = 3 ( Kr(t-T)k${T)dT, 

<ty(r ,(/)=2 j Gr(t-T)e!/r)(T)dT, (2) 

where Kr and Gr are the relaxation moduli of the rth phase. 
Conversely, in terms of the creep functions Ir and Jr, one has 

1 f' 
4 ? ( 0 = r W-T)b$(T)dT, 

1 (•' 
e!/r\t)=-\ Jr(t-T)a;/r)(T)dT. (3) 

The dot on the top, as usual, indicates the differentiation with 
respect to time. 

The Laplace transform (LT) of a function f(t) is written 
with a hat, as 

f(s)=\ f(t)e's'dt. (4) 

It then follows from the differential form (1) that 

Xr(s)S&{s)=SAs)e${s), 

PAs)a!/r)(s)=QAs)i!/r)(s). (5) 

From the integral form (2), one has 

&&'(*) = 3der(s)e&»(s), 

a!jlr\s) =2sGr(s)e!j(r) (s), (6) 

and from (3), 

eij
{r\s)=^sJr{s)S'iy

)(s). (7) 

The constitutive Eqs. (5) to (7) in the transformed domain 
(TD) can be generally written as 

alr
k\s)=3K™(s)et)(s), 

a!/r)(.s) = 2n™(s)e;/r)(s), (8) 

where KJD and /xfD—as their elastic counterparts—are the bulk 
and shear moduli of the rth phase in the transformed domain. 
These are given by 
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1 Sr(s) TD L u r W TD 
Kr = 7 „ , . , AV = 

1 & ( j ) 

~ 2 P r ( 5 ) ' 

= S<5r(s), 

V r ( j ) * ^ ( S ) ' 
(9) 

following (5), (6), and (7), respectively. In the case of dynamic 
harmonic loading, the corresponding complex moduli (Hashin 
1970a,b, Roscoe 1969, 1972) K*{iw) and /x*(/w) can be directly 
used, with K™(;'W) = K* (iw) and nJD{iw) = ix*{iw). 

The moduli and compliances tensorsof the rth phase in the 
transformed domain then have the hydrostatic and deviatoric 
components 

1 ' ' do) rTD it TD ^ TDs 
3«r 2fir 

in Hill's (1965a) shorthand notation. 

3 Mori-Tanaka's Theory in the Transformed Domain 
The creep and relaxation behavior of the composite can be 

determined by subjecting it to a constant stress <J and constant 
strain t, respectively. This is tantamount to the two commonly 
adopted boundary conditions in the determination of the over
all elastic behavior of the heterogeneous material. This can be 
done by using Weng's (1984) original formulation, but now 
cast in the transformed domain. For brevity, a second-order 
tensor will be denoted by a boldfaced Greek letter and a fourth-
order one by an ordinary capital letter here. 

3.1 Traction-Prescribed Condition. Let the composite be 
subjected to a boundary traction which would give rise to a 
uniform stress a in the transformed domain. The strain of the 
comparison material with L™ is now given by 

TD~ — 

= L0 a, (11) 

under the same traction. Then, following Weng's (1984) anal 
ysis in the elastic case, the strain of the composite in the trans 
formed domain can be expressed as 

t=(I+ClA
MTD)e°, (12) 

where 
Ai°)TD_ [(Z,rD- JL0

r o)(ci/+c0S'") 
+ LlDV\LjD-LlD), (13) 

and the symbol / i s the fourth-order symmetric identity tensor, 
and STD the Eshelby tensor, but written in terms of the aspect 
ratio of inclusions a and L™ or Poisson's ratio vlD in the 
transformed domain. Its components for a spheroidal inclusion 
can be found, for example, from Mura (1987) with v0 replaced 
by vlD. 

The effective moduli tensor of the composite in the trans
formed domain is defined by a = LTDe, and thus from (11) 
and (12) one finds 

LTD = LlD{I+cxA
WTDY 

or 
MTD=(I+CiA MTD\A/rTD 

wtL (14) 

for the compliances tensor. 
These moduli or compliances tensors allow one to determine 

the overall viscoelastic behavior of the composite. In partic
ular, when the composite is subjected to a constant stress a in 
the real space, the evolution of its creep strain can be found 
by applying the inverse Laplace transform to t. Symbolically, 
it is given by 

f(t)=£~l(l) = £,-l(MT%, (15) 

where the operator £ ~ ' denotes the said inverse process. 

3.2 Displacement-Prescribed Condition. A dual formu
lation can be written for the displacement-prescribed boundary 
condition which gives rise to a uniform strain e in the trans
formed domain. The equations are entirely analogous, with 
stress changed to strain, moduli changed to compliances, and 
Eshelby's S-tensor changed to Hill's (1965) T-tensor. This 
boundary condition is especially suitable for the determination 
of the stress relaxation of the composite. The detailed mean 
stress and mean strain relation for each constituent can be 
inferred from Weng's (1984) equations but now cast in the 
transformed domain. This formulation leads to 

LTD = LlD(I-c,A (c)TD 
(16) 

where 

A^'D=-[cQ{L\D-LlD)STD
 + LlDYl{LlD-LlD), (17) 

with the superscript e indicating the strain-controlled process. 
Then, if needed, the stress relaxation of the composite under 

a constant strain e can be evaluated from the Laplace inverse, 

o{t)=£-l(5) = £-\LTDt). (18) 

As proved by Weng (1984) and Benveniste (1987) in the 
elastic case, these two formulations are entirely equivalent. 

4 The Aspect-Ratio Dependence of the Creep Behavior 
of an Aligned Viscoelastic Composite 

We now examine the transversely isotropic creep behavior 
of the composite as the shape of its aligned inclusions changes 
from thin disks to spheres, and all the way to continuous fibers. 

4.1 Spherical Inclusions. In the case of spheres, the com
posite is isotropic and both (14) and (16) can be decomposed 
into (see Weng, 1984 for the elastic composite) 

TD TD , C l 

l / M 
TD TDs , i „ / t i TD , A TD\> 

K0 ) + 3c0/(3/<o +4/*0 ) 

TD , :M0 + 
1/0*/" - pi") + 6c0 ( 4 " + 2 ^ " ) / [ 5 ^ r ( 3 / c r + 4ri")] 

1 

(19) 

Under a constant stress 5^, its Laplace transform is ay = 

ay. Thus, 

. 1 _ 1 _ = , ! _ ! - ' 
€kk~3KTDsakl" eiJ~2»TDsau' 

(20) 

and these lead to the creep strain upon the Laplace inversion 
f. 6 + )'oo 

{ 1 1 

3 27TZ J5_,„ 

^(0=frM \Avfds, (21) 
2 2irl Ĵ -zoo S n 

where 5 is a positive number. The coefficients of akk and oy/ 
define the hydrostatic and deviatoric components of the overall 
creep compliance, respectively, of the composite. The bulk 
behavior derived here coincides with the exact solution based 
on Hashin's (1965) composite sphere assemblage. When the 
inclusions become voids or totally rigid and the Poisson ratio 
of the matrix remains unchanged in the transformed domain 
(VQD = p0), the shear behavior derived here also coincides with 
Christensen's (1969) approximate solution (his Eq. (97)), which 
has been demonstrated to lie between his bounds for the cor
responding complex modulus. 

4.2 Fiber Composites. When the spheroidal inclusions 
take the form of circular fibers, both (14) and (16) lead to the 
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following five independent overall moduli in the transformed 
domain (see Zhao et al. (1989) for the elastic cases) 

El? = clElD + c0ESD + 
AcxcQ(v]D-vlD)2 

Ci/k^ + co/kr+l/^ TD' 

TD „ TD . TD . C\Co(v\ 
V\l =C\V\ +C0V0 + 

•vlD){\/klD~\/k\D) 

Cl/kr + co/kiu+l/^L 

TD 
M12 = 

TD . 
MO + 

„ TD 
ClMO 

Mo /(Mi -^D)+c0/2' 

TD __ TD, 
M23 "MO + 

„ TD 
C1M0 

^u/(v.r-^)+c0(ki»+2^)/[2(ti»+dD)r 
TD_ i-TD , 
*23 =«0 +" 

C\ 

\/{k["-K'j)+ca/(kiD+dDy (22) 

respectively, for the longitudinal Young's modulus, major 
Poisson's ratio, axial shear and transverse shear moduli, and 
plane-strain bulk modulus in the transformed domain, where 
kJD is the plane-strain bulk modulus of the rth phase in the 
transformed domain. With the exception of /4?, the other four 
moduli coincide with Hashin's (1966) exact solutions for the 
composite cylinder assemblage model. 

If E22 ( = Elf) is needed, it is given by the transversely 
isotropic relation 

4K|F 

"K2?/M2?+l+4,ff\I?/i??r 
(23) 

,TD ,TD + c0ll
D/nlD) /(cMD + cQ/nlD), 

„TD~-

-JD' 

Co 

nfD + nlD' 

= cimJD + camlD, 

C\ 
h_£L 

nTD' 

Po 

(29) 
P P\ 
which, by means of the correspondence principle, are exact 
for this micros.tructure. The corresponding creep compliances 
then follow similarly as in the fiber case. 

4.4 General Spheroids. For the general spheroids with an 
aspect ratio a, Eqs. (14) and (16) can be cast into the following 
form for the five independent moduli in the transformed do
main (see also Tandon and Weng, 1984): 

Elf_ 1 
ElD \+cl(Al+2vlDA2)/A' 

TD 

£12—1+ 
ro-i-t- TD TD 

Mo Mo / (Mi -
TD 

2 2 L - 1 + 
TD" 1 T . TD 

C\ 
TDs , ->„ r,TD ' 

MO ) + 2C0Sl2l2 

C\ 

M o " niu/(n'1"-^u)+2c0Sir23 

vlD(A{ + 2ulDA2) + (A, - vlDAA) TD TD 
"12 = "0 ~C\ A + cl(A1+2v!>"A2) 

TD 
*23 ( l + "oro)(l- •2vlD)A 

k'Q
u (1 - V'0

V)A - c,\2viDA,- (1 - vlD)A,\ - 2v\?\vlDA - c, (A3- PIDA,)]' 
(30) 

In Hill (1965) and Walpole's (1969) shorthand notations, or 
the transversely isotropic moduli tensor L can be written as 

LTD=(2kTD,lT 

with 

kTD=KW, TD 
; M 2 3 > 

2m'", 2p'u) 

TD_ TD 
P - M l 2 . 

Ef? = n TD iTD l'u/k'v, vi2" = l'"/{2k"J). 

fTD , The compliance tensor M then has the components 
„TD „TD ! j j 

MTD = n 
TD 

V\2 

2kTDE{?' £ l l 
rpTD' 
i l l 2mTD' 2pTD 

When the composite is subjected to a constant stress a, we 
have 

--MTDt = MTD-a, 

-21 £33 
pTD - pTD 
£ 0 tL0 

(24) £22__£lL 

l+cl[-2vZDA3+(l-i>0
rD)A4+(l + vl

D)A5A]/(2A)' 

(25) where the constants (not tensors) Au A2, A3, A4, A5, and A— 
in Tandon and Weng's (1984) original notations—depend on 
the aspect ratio a, volume fraction C\ of the inclusions and the 

(26) moduli LjD of the constituents; they are given in Appendix A. 
With these relations the overall viscoelastic behavior of the 

composite can be examined at a given aspect ratio and volume 
fraction of inclusions. The overall creep under a constant stress, 
in particular, will follow from the same framework outlined 

(27) in (24) to (28). 

and this can be inverted to yield the creep strain tensor 
, 5 + /oo < 

1{t)=^i 
M e as (28) 

Equation (27) is of great use in the evaluation of the anisotropic 
creep behavior for a wide class of fiber-reinforced polymer 
matrix composites. 

4.3 Aligned Disks. In this extreme case the microge-
ometry is identical to the monotonically aligned thin ribbon 
examined by Zhao and Weng (1990), and the elastic results, 
have been proven to coincide with Walpole's (1969) exact so
lution for a laminated medium (Weng, 1990). In Walpole's 
(1969) form for the aligned laminate, the five independent 
moduli in the transformed domain can be written as 

.c,k[D+c0klD + cxcM 
jTD iTD 

TD-, /JO j l _ 

nlD 111-", 1 m 
to )[nTD 

/ 

( C l / r t l ' + Co/noro), 

5 Composites With Randomly Oriented Spheroidal In
clusions 

Mori-Tanaka's basic framework in the transformed domain 
can be similarly established for this microgeometry following 
Tandon and Weng's (1986) elastic formulation. This differs 
from that outlined in Section 3 only in two aspects: First, 
im and e* are both orientation-dependent and their connection 
through the Sro-tensor should be written in the local ^oriented 
axes, and second, the orientational average, such as 5 = Coa'0' 
+ Ci I ff(l) J for the stress, should be used to evaluate the overall 
stress and strain in the transformed domain. The procedure is 
a straightforward one and only the end results will be quoted 
here. 

Before the general results for a given a are provided, the 
following three special shapes are of particular interest: 

5.1 Spheres. These results are identical to those given in 
(19). In the elastic case, this pair of moduli also coincide with 
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Hashin and Shtrikman's (1963) lower (upper) bounds if the 
matrix is the softer (harder) phase. 

5.2 Randomly Oriented Circular Disks: a — 0. In this 
case, the overall bulk and shear moduli in the transformed 
domain are 

KTD = K{D + 
Co 

l/o^-Kfvsc/o/cp+vpy 
TD TD , Colli 

IJJ / / J L 

IH /(/*o 
TD 

-IH 

(31) 

qfD=l Pfa + ajMSffr-Sg?,-

/>T=[« i -2 ( f l 2 - f l 3 -a 4 ) ] / (3«) , 

1 
15a 

+ (2a3-

+ (2« 3 • 

2 2^1212 — 1 
« 1QTD , TD /, TD 7Z>\ 
5 26 1 2 l2 + ^ 0 'Kill - / * 0 ) 

^ ' f l = - r 

1) 

«4 - «5«) ( 5 ™ 2 - $2222 + 1) 

- a 4 + a 5 a ) (S1122-S2233)] 

1 
+ r 

z^2323 _ 

-j 1 C ,7B . TD/, Tl 
3 2S2323 + M0 / ( M l -Mo")1 

O c W 1 TD /1 TD 
5 2bm2 + lio /(IH -

TD^ 
MO ) 

In direct contrast to (19), this pair of moduli coincide with 
Hashin and Shtrikman's (1963) upper (lower) bounds in the 
elastic domain if the matrix is the softer (harder) phase. 

5.3 Randomly Oriented Needles or Slender Rods: a — 
00. The corresponding overall moduli can be simplified to be 

1 3c, 
KTD = K(D + CO 

TD TD . „ 
II =lll +C0 

K!D-
TD + 

•«1 
1 TD . TD , -, TD 
3KJ +ll[ +3/^0 

TD 
MO " 

2 
TD+ c C l 

Hi 5 
TD , TD 

III +Il0 

' TD, TD/,? A„TD\^ -, -,„TD, TD,-, TL 
ixi +ii0 / ( 3 - 4 c 0 ) 2 3K, + / i ! + 3/*0 

(32) 

Comparing the first of (32) to that of (31), it is apparent that, 
when the matrix is the softer phase (/̂ p5 > no ), one finds 
K X > KmSdic Though less evident, the same conclusion can 
be drawn for fiTD after changing v™ to K™ a nd iilD-

5.4 General Spheroids With an Aspect Ratio a. By anal
ogy to Tandon and Weng's (1986) expressions for the elastic 
case, the overall moduli are 

1 1 
tf-i + cp™ TD~ 

110 \+cxq' 
(33) 

where 
TD _ nTD , TD 

q -q2 /q\ , 

+ (SjPu +2SWn - l)(«i - 2fl2)]/(3fl), 

' 1 OC™ , TD/, TD TDK 
3 262323 +110 /(ill -W> ) 

+ — - [2( f l ,+f l2 -
15a 

0^+04 + ^0]. (34) 

The constants au a2, «3, #4, o$, and a depend on the aspect 
ratio a and the moduli Lr

f l of the constituents; their expressions 
are listed in Appendix B. 

These general expressions reduce to (19), (31), and (32) when 
a is set equal to 1, 0, and 00, respectively. 

With this pair of moduli, the shape dependence of the overall 
viscoelastic behavior can be found. The evolution of creep 
strain under a constant stress also follows from (21). 

6 Numerical Results and Comparison With Experi
ments 

It is now of interest to apply the theory to some practical 
system. To this end we first note that the preceding results 
have been given in the transformed domain and that these 
expressions must be transformed back to the time domain for 
practical purposes. Now various viscoelastic models can be 
called for, so that the precise forms of K[D and fiJD can be 
determined. 

For instance if the rth phase is purely elastic, then simply 
Kr = Kr and ixJD - fxr. For the three popular viscoelastic 
models, one has the transformed shear modulus 

TD 
/V = l/rir + S/jlr 

= llr + VrS, 

for the Maxwell model, 

for the Voigt model, 

a n = 63.97 Mpa 

t, hr 

1000 2000 
Fig. 1 Creep behavior of the ED-6 resin by a four-parameter rheological 
model 
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Fig. 2 The aspect-ratio dependence of the creep compliance under five 
respective loadings for a transversely isotropic composite with aligned 
spheroidal inclusions 

IV? + uru.r /rir , 
_ ,— for a three-parameter standard solid, 

S+ (Hr+V-r )/l?r 
(no sum over r) (35) 

where rir is the shear viscosity and \i'r the shear spring constant 
connected in parallel with the dashpot. A completely parallel 
set of expressions exist for K™. These three models, though 
useful in their own right are, however, often found inadequate 
to simulate the observed creep behavior of practical polymeric 
systems, for they are incapable of showing, respectively, the 
transient creep, the initial elastic strain, and the long-term 
steady-state creep. 

A more realistic one is the four-parameter model which 

essentially puts the Maxwell and Voigt models together in 
series. Since most experiments were carried out under a pure 
tension, it is more convenient to express these four parameters 
in tension. As shown in the inset of Fig. 1, these four param
eters then can be written as EM, -qM, and Ev, riv with superscripts 
M and V referring to the Maxwell and the Voigt elements, 
respectively. The Young's modulus in the transformed domain 
for this model is found to be 

r?TD — 
£r --

EJCrfW+uft)* (36) 

(no sum over r) 

for the rth phase. 
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Tensile creep tests for the ED-6 resin were conducted by 
Skudra and Auzukalns (1973) at 20° C under two constant stress 
au = 63.97 MPa and 14.80 MPa, and the corresponding creep 
data are plotted as open circles in Fig. 1. It is well known that 
the extent of separation between two sets of creep data defines 
the stress exponent n in a power-law creep e ~ a" and this 
pair of data after our simulation confirms that the polymer 
considered here is indeed linearly viscoelastic (n ~ 1). Among 
the four constants cited above, EM\s also the ordinary Young's 
modulus E and reflects the initial strain (t = 0), i\M defines 
the long-term steady creep rate, and Ev and 17 characterize 
the rate of transition in the nonlinear creep strain versus time 
curve. Based on this set of data, the material constants for the 
resin have been found to be 

TM _ £,0 - 3.27 GPa = (£'o), E{J = 1.8 GPa, 

r/^= 8000 GPa»hr, 7,0 = 300 GPa-hr, (37) 
with a Poisson's ratio v0 = 0.38. This set of constants gives 
rise to the two theoretical curves in Fig. 1 under the same 
stresses. Here for simplicity the Poisson's ratio has been as
sumed to remain unchanged in the transformed domain vlD 

= VQ. TO verify the validity of such an assumption an additional 
test under different loading mode, such as pure shear or pure 
hydrostatic pressure, is required. This unfortunately is not 
available. The implication of such an assumption is that 

IXTD/IX = ETD/E=KTD/K, (38) 

for the resin. (On the other hand, one may assume that KTD 

= K; namely creep takes place only under deviatoric stress (as 
in metals). Then, ETD/E = (1 - 2vTD)/{\ - 2v) and / / % 
= (1 - 2vTD){\ + v)/[{\ - 2v)(l + /^ .However , since the 
viscoelastic behavior of most polymers is known to be pressure 
dependent, KTD = K does not seem to be a good assumption.) 

To assess the aspect-ratio dependence of the overall creep 
behavior, we now consider the inclusions to possess the prop
erty of glass fibers, which are elastic at room temperature. Its 
elastic moduli are 

Kf
D = K, = 39.43 GPa, IMD = I*I =28.35 GPa. (39) 

The influence of inclusion shape on the creep compliances is 
now examined. 

6.1 Composite With Aligned Spheroidal Inclu
sions. Substituting the transformed moduli KJD and nJD as 
given by (36) to (39) into (30), the five independent overall 

moduli in the transformed domain can be obtained for the 
aligned composite at a given aspect ratio a and volume fraction 
Cj of the inclusions. The various components of creep com
pliances can then be evaluated from (28), with the compliances 
tensor MTD given by (26). Since each component of MTD is 
rather complicated, the inversion process in (28) was carried 
out numerically at a given a and c,. The method used employs 
the Legendre polynomials as suggested by Bellman, Kalaba, 
and Lockett (1966). The corresponding creep compliances un
der five respective loadings are plotted in Fig. 2, at ct = 0.3. 

Under a constant tensile stress, the dependence of the axial 
creep compliance is depicted in Fig. 2(a). This figure indicates 
that spherical inclusions (a = 1) at C\ = 0.3 is the most 
compliant type of reinforcement, whereas the long, continuous 
fibers (a — 00) provide the most superior creep resistance for 
the composite. Prolate inclusions are in general more superior 
to the oblate ones (a versus \/a) under this loading direction. 
The initial response at t = 0 represents the elastic compliances, 
which reduces to the elastic formulation of Tandon and Weng 
(1984). The stronger creep resistance provided by the thin disks 
over the spherical particles at this volume fraction is perhaps 
somewhat unexpected; this, however, has also been observed 
by Tandon and Weng (1984) in the elastic case and Lee and 
Mear (1991) in the nonlinear elastoplastic behavior. As the 

oil = 529 Mpa 

441 Mpa 

337 Mpa 

, t, hr 

0 300 600 900 1200 

Fig. 3 Comparison between the theoretical predictions and the exper
imental data for the creep curves of a glass-fiber/ED-6 resin composite 
at c, = 0.54 
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Fig. 4 The aspect-ratio dependence of the creep compliance under 
hydrostatic and shear loadings for an isotropic composite with randomly 
oriented spheroidal inclusions 
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volume concentration of inclusions increases (say beyond 60 
percent in an elastic glass/epoxy system; see Fig. 2 of Tandon 
and Weng, 1984), the spherical inclusions can become more 
effective than the disks. The three extreme shapes of inclusions 
a = 1, °°, and 0, also correspond to the explicit results given 
by (19), (22), and (29), respectively. 

The creep compliances under a transverse tension a22, axial 
shear er12, transverse shear <T23. and plane-strain biaxial tension 
(o2i = ff33» «ii = 0), are shown in Fig. 2(b), (c), (d), and (e), 
in turn. It can be observed that under transverse loadings (e.g., 
(?22> 023, <*22 = 033). disks (a —• 0) provide the most effective 
creep resistance for the composite, with all prolate inclusions 
a a 1 offering almost similar amount of influence. The overall 
axial shear behavior appears to be less sensitive to the inclusion 
shapes, but here prolate inclusions are somewhat more desir
able than the oblate ones. 

Although no sufficient experimental data exist to allow for 
a full assessment of the developed theory, creep tests of a fiber-
reinforced composite at three levels of tensile stresses—~au = 
529 MPa, 441 MPa, and 337 MPa—have been carried out also 
by Skudra and Auzukalns (1973) at the fiber concentration cx 
= 0.54. The corresponding experimental data are reproduced 
as open circles in Fig. 3. To obtain the theoretical creep curves, 
we first generate an axial creep compliance curve at this fiber 
concentration (as the bottom one in Fig. 2(a), but at Ci = 
0.54), and then multiply it by these three stresses. The theo
retical results are also plotted in Fig. 3; the agreement with 
the experiment is remarkable indeed. 

6.2 Composite With Randomly Oriented Spheroidal In
clusions. Based on (33) and (34), the aspect-ratio dependence 
of the hydrostatic and deviatoric components of the overall 
creep compliance is plotted in Fig. 4(a) and (b), respectively, 
at C! = 0.3. Consistent with the initial elastic behavior, spher
ical inclusions provide the most compliant composite whereas 
the circular thin disks give rise to the most effective improve
ment for the creep resistance of the composite. Below a = 10, 
the prolate and oblate inclusions with the inversed aspect ratios 
(a = 1/a) are almost equally effective. The three special cases 
a. = 1,0, and 00 also correspond to (19), (31), and (32), 
respectively. 
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A P P E N D I X A 

At, A2, A3, A4, A5, and A 
Keeping Tandon and Weng's (1984) original notations, these 

constants (not tensors) are given by 

Al=Dl(B4 + B5)-2B2, 

A2=(1+D1)B2-(B, + B5), 

A, = B,-D,B„ 

^ 4 = ( l + A ) 5 1 - 2 f i 3 , 
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A5=(l-D1)/{B4-B5), 

A=2B2B3-Bl(B4 + B5), (Al) 

where, in terms of the Lame constants \Jr
D and \JD of the rth 

phase, 

A = i+2(MfZ5-Moro)/(xF>-x0
7B), 

A = ( X o r o + 2w
rV(Xr i 5-Xo r o), 

A = Xo ro/(Xrz,-X0
ro) ! (A2) 

and, with cr representing the volume fraction, 

B, = c ,A + A + c0 ( A S m . + 2SJ&), 

•B2 =
 c l + A + Co (A"Sn22 + S2222 + ̂ 2233 ) > 

5 3 = c 1 + A + Co[Smi+( l+A)S272?i ] , 

Z?4 = c, A + A + to (Sfi22+AS2T22 + Si»3), 

5 5 = c, + A + Co (Sim + SW22 + A52™3) • (A3) 

Constants Au A2, A3, A4, A5, and A are seen to depend on 
the shape and volume fraction of the inclusions. 

A P P E N D I X B 

Components of alt a2, a3, a4, as, and a 

These components have been derived by Tandon and Weng 
(1986), with 

•c/ TD 7"£>w TD TD\,aTD . cTD t\ 
fl, =6 (« i - /CO )(/*! "Mo )(S2222 + i 2 2 3 3 - l ) 

- 2 ( K 0 Mi ~ K i Mo ) + OKI (Mi ~Mo ), 

,-/ ro row ro TD\CTD . ~,, TD TD TD TD\ 
a2 = 6(Ki-Ko){ni~Ho)Sm3 + 2(Ko Mi ~« i Mo ) , 

« 3 = - 6 ( K , - K 0 )(/XJ - M O ) S 3 3 I I - 2 ( K 0 MI ~ « I Mo ). 

Cl TD TOw TD TEK,QTD , \ 

O4 = 6(KI - K 0 )(MI - M O X S i i n - 1 ) 
. 11 ,TD TD TD TD^, , /- TD, TD TD. 

+ 2(K0 MI - « i Mo ) + 6MI («I - K 0 ), 
1 /!QTD QTD , 1 , TD//TD ,,rDii 

(75= l / [5 3 322->33333+I -Ml /(Ml ~ MO )J» 

„ r / TD TDW TD TD^rinTD r.TD , r,TD ,-. 
a = 6(Ki -Ko )(MI - M O ) [ 2 S U 3 3 S 3 3 U - ( S n n - 1) 

•^/c-TD , QTD , i , .~,f,TD,TD TD TD*.,<,,QTD . nTD N X(S3322 + S3333-l)J+2(Ko Ml ~ Kl MO )[2(SU33 + S3311) 
. ,QTD CTD ?TD U /r.TD, TD TD-, , QTD , S 

+ ( S U I I - S 3 3 2 2 - S 3 3 3 3 ) ] - 6 K 1 (M I - M O ) ( S i m - l ) 
l- TD, TD TDs,QTD , QTD ,v -; TD TD / T > 1 S 

-OMl (Kl - K 0 )(S2222 + S 2 2 3 3 - l ) - 6 / C l Ml • (B l ) 
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Regular Pyramid Punch Problem 
G. G. Bilodeau 

Department of Mechanical Engineering, An approximate solution is found for a regular pyramidal punch indenting, without 
Concordia University, friction, an elastic half-space. The method is based on the reasonable assumption 

Montreal, QC H3G 1M8, Canada of the stress distribution and of the region of contact. The force-indentation rela
tionship is obtained for a regular pyramidal punch. The results compare well with 
direct numerical results. 

Introduction 
The closest type of problem, in literature, related to the 

pyramidal punch problem is that dealing with the conical punch. 
Numerous papers have dealt with the conical punch of which 
two are (Love, 1939) and (Galin, 1953). This type of punch 
problem is axisymmetric and the region of contact is known 
in advance. In addition, its solution is exact. On the other 
hand, the pyramid punch problem is nonaxisymmetric with 
respect to both the stress distribution and the profile of the 
punch. Furthermore, the stress and the region of contact are 
not known beforehand, thus approximations must be made. 
This problem has not been solved before, except in a recent 
paper (Barber and Billings, 1990) in which, as an example of 
their approach, a tetrahedral punch is under investigation. 
Although their solution approximates the direct numerical re
sult of Hartnett 's method (Hartnett, 1980) closely, the shape 
of the contact area is incorrect. The present problem is solved 
by assuming a reasonable contact area and normal stress, and 
then determining the area of contact which maximizes the 
indenting force by the use of an expression for normal dis
placement found in Fabrikant (1989) and the variational ap
proach (Noble, 1960; Fabrikant, 1989). Several examples of 
pyramidal punches are solved and compared, where possible, 
to other solutions. 

Method 
Description of the Problem. An elastic half-space, z > 0, 

is indented by a rigid pyramidal punch, without friction (the 
frictionless contact problem is described in Barber and Billings, 
(1990). The lateral faces of the pyramid are isosceles triangles 
and the base is an M-sided polygon. In the regular pyramid, 
all the lateral edges are of equal length. The inclination of each 
triangle face is the angle a, which must be close to zero in 
order to stay within the elastic range. The orientation of the 
pyramid is such that the apex of the pyramid is indenting the 
half-space. We use polar coordinates with the origin along the 
centroidal axis of the polygon. The boundary of contact is 
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P = «(«)• CD 
The indentation in polar coordinates is known to be, for 

this type of problem, 

, „ , , ^ (m — l)ir (m+l)ir 
o)(p,(j)) = o- pta.nacos((j)~ mTr/n), <</>< , 

n n 
(2) 

where m = 2/ - 2, j - 1,2, 3 , . . . , n. The integery corresponds 
to each side starting with <j> = 0. For example, for the third 
side, J = 3, m = 4, oi(p, <j>) becomes 

co(p,0) = 5-ptanacos^-4ir/n), 3ir/n<4><5ir/n. 
In the remainder of the paper, only the interval - -w/n < <j> 
< -w/n will be shown unless clarity is needed. 5 is the inden
tation of the vertex and a is the inclination of the polyhedral 
face. 

Assumption of Stress and Contact Boundary. We must 
assume both the stress distribution and the contact boundary. 
The assumption of o(p, 4>) is based on the known (Love, 1939) 
stress distribution for a rigid cone, 

a(p,4>) = Ccosh~\a/p), (3) 
where C is a constant and a is the radius of the contact area. 
In both the cone and the pyramid, the apex (p = 0) represents 
a singularity in the stress. Furthermore, the stress goes to zero 
at the border of the contact area due to a smooth transition 
to the half-space. The difference between the two punches is 
that the stress distribution for the pyramid has singularities 
produced by the lateral edges joining each face of the pyramid. 
These conditions are restated as: 

1 o(0,4>)~oo, 

2 alp, j ^ o o , alp, - J — oo, 

3 o-(p,4>) = 0 fo rp>«W>) . 

The conditions given above and the stress distribution for the 
cone allow us to obtain an expression for the stress distribution 
for a pyramid punch 

o(p,<l)) = Kg(4>)cosh~i(a(4>)/p), -ir/n<(j><Tr/n. (4) 

Here, K is some constant to be determined later, and g(<j>) is 
infinite at the lateral edges. The type of singularity and the 
function represented by g(<j>) will be discussed later. Equation 
(4) is repeated for the other intervals with appropriate changes 
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for 4>. The logarithmic singularity at the apex arises from the 
stress distribution for the cone. Furthermore, we see that (4) 
is the stress distribution for a cone multiplied by a function 
which has a singularity at the lateral edges of the pyramid. 

The boundary of the contact area is reasonably assumed to 
be a polygon of the same type as the base of the pyramid 
described earlier. Thus, the polygon corresponding to a quad
rilateral pyramid is the square. This leads to an expression for 
0(0), 

«(</>)= -, -Tr/rKcjXir/n. (5) 
cos<p 

Again, (5) is repeated for the other intervals. 

Solving the Problem. We must determine the constant K 
in (4). The total force P is found using 

P = j j 4>(p,4>)dS. 

Substitution of (4) into (6) gives 

(
Tr/n j»a(0) 

g{<f>)cosh~1(a{4>)/p)pdpd(j). 

(6) 

(7) 
- 7 i 7 n •'O 

Multiplication by n in (7) takes into account the other intervals 
which are identical to the first interval. We now integrate (7) 
with respect to p. Substitution of a(4>) from (5) leads to an 
expression for K, 

IP 
K--

where 

/ ,=« 
g(<t>)d<j> 

, cos2</> 

(8) 

(9) 

The integral in (9) is a constant and can be computed numer
ically for a particular pyramid using a standard computer li
brary such as IMSL. 

We now use a well known (Fabrikant, 1989) expression gov
erning the elastic contact problem for a smooth punch which 
is 

u(p,4>) -»JJ. o(po,<t>o) 

R 
dS0, (10) 

where R is the distance between points (po, 4>o) and (p, <t>). 
Also, co(p, <j>) is given in (2) and H (Fabrikant, 1989) is the 
elastic constant for isotropic solids 

/ / = : 

Here, v and ix are Poisson's coefficient and the modulus of 
rigidity, respectively. The integral representation for the re
ciprocal of the distance given in (Fabrikant, 1989) is 

1 1 

R 1 2 2 
-yp +p o -2pp ocos(0-0o) 

_2 p 
IT J 0 

min(p0,P) X ( x 2 / i O / O O ) 0 _ 0 o ) c ? x 

[<P2-X2)(p§-X2)]"2 

where \(k,<j> - <t>o) is represented as a sum 

, (12) 

A(fc,0-</>o) = S k"^ 
! '(«-0o) (13) 

Substitution of (12) into (10) gives the following expression in 
terms of the integral £-operator (Fabrikant, 1989), 

?" dx [a('l') Podpo 
,2 j.\\n l . 2 ^ ^ 1 / 2 ^ 1 )o(p,<t>)-

0 (p -XT) Jx (Po-x) \PPoJ 

x1 

(14) 

Fabrikant introduces the £-operator, for k < 1, as 

With (15), (14) becomes Eq. (5.4.1) in Fabrikant (1989) 

(15) 

co(p 
2 f dx r 

d(t>o 

"^U^/pp^-M nil IPC 

x I • ' / 2 ^2^1 /2 " °(Po><l>o)Podpo- (16) 

Consider the zeroth harmonic, that is / = 0, to simplify the 
problem. Substituting (4) into (16), the integrals with respect 
to po and x can be evaluated, leading to 

to>oO>.4>) = - HKn g(<£o) -7 a(<t>o)--p d<j>0. (17) 

By using the variational approach (Noble, 1960), we get the 
following functions (Fabrikant, 1989) which has its maximum 
value at the exact solution of (10) 

/(or)=-| j j <7(P,<t>)u(p,4>)dS 

-\[alp'*)[\\s^
dSo]dS (18) 

on letting 

Mi2nr^-M»- (19) 

Substituting (2), (4), and (19) into (18) followed by an inte
gration with respect to p leads to 

K8--K2HLFl)a
1((t>) 

+ - K2HF2 - Ktmacos<t> 
7T«3(0) 

d<t>, (20) 

where 

-r g(<t>o)d<t>0 

-,/n COS(t>0 

F2 = n \ g(4>0)d4>0. 
-•x/n 

(11) After substitution of (5) and (8) into (20), we have 

/(*) = 
2Pn 

Hh 

„ irPHFi irPHF2h 7r/iXtana 
oJ\ ~— + 

1L 6/,L 

(21) 

(22) 

where the integrals I{ (from (9)) and I2 are 

n7r/n 
r n

 g^)d<i> 
i=n \ 2— 

[T/" gW)d<t> 
' = ")_ cos 4> 

(23) 

In order to maximize 1(a) we use the condition dI(cj)/dL = 
0. The outcome is the following expression relating P and L: 

P = -
I2L2tana 

(24) 
#(3 / 1 Fl - / 2 F 1 ) • 

We set p = 0 in both (2) and (17). Equating the two equations 
we obtain a relationship between 5 and L 

TTPHFI 
L = -

Ii8 
(25) 
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Table 1 Force-indentation coefficients Table 2 Area-indentation coefficients 

c, 
c, 
c„ 

due 

due 

due 

n 

to 

to 

to 

g,M 
fr,M 

g,M 

3 

1.777 

1.819 

1.807 

4 

1.491 

1.519 

1.517 

5 

1.398 

1.417 

1.417 

6 

1.355 

1.369 

1.369 

8 

1.316 

1.325 

1.325 

10 

1.300 

1.306 

1.306 

15 

1.285 

1.287 

1.287 

20 

1.280 

1.281 

1.281 

50 

1.274 

1.274 

1.274 

c, 
c 
c 

I 

due 

due 

due 

n 

to 

to 

to 

*,M 
g,W) 
(?3M 

3 

1.895 

1.867 

1.864 

4 

1.579 

1.573 

1.573 

5 

1.458 

1.456 

1.456 

6 

1.398 

1.397 

1.397 

8 

1.341 

1.341 

1.341 

10 

1.316 

1.316 

1.316 

15 

1.292 

1.292 

1.292 

20 

1.284 

1.284 

1.284 

50 

1.275 

1.275 

1.275 

Substitution of (25) and (11) in (24) obtains the sought after 
force-penetration relation for a rectangular pyramid punch 

•JIlFi-I2F1 

2F? 
46V 

ir(l - v)tana 
(26) 

Note that (26) is essentially a constant multiplied by the known 
exact force-penetration relationship for a cone (Galin, 1953). 
As a matter of fact, when n is sufficiently large, the integrals 
(/,, I2, Fu F2) will all be closely equal to each other, such that 

2Ff - = 1 , (27) 

and (26) reduces to the conical solution. 

Results/Examples 
We will determine the effect of the singularity type (i.e., 

g(<j>)) at the lateral edges on the results, compare the results to 
known solutions, and determine how well the approximate 
stress distribution approximates the punch displacement. 

Comparison of Lateral Edge Singularity Types. Several 
punch problems will be considered in which the singularities 
along the lateral edges will be, for comparison purposes, 

, _ , / 1.5ir/n 
1 * l W = c o s h " ( j ^ o ^ 
2 gi(4>) = (Vcosc/> - cos(ir/n)) ', 

j. \ i - i 

3 &(*) = cosh ' 
cos(ir/n))J 

The first and third functions represent logarithmic singularities 
which are in agreement with the logarithmic singularity ob
served in the wedge problem. The second function is used to 
demonstrate that the method is not very sensitive to the type 
of singularity. Table 1 shows the coefficient relating the force 
P and the indentation 8 due to the three singularities, such 
that 

P=C0 
Ii8 

(1 - v)tana 
(28) 

Table 2 compares the relationship between the area of contact 
and the indentation using the three types of singularities, where 

tan a 
(29) 

From both tables, the results do not change significantly as 
we change the singularity. Therefore, the method used is not 
very sensitive to the singularity used along the lateral edges. 
In addition, this allows some flexibility in choosing the sin
gularity in order to reduce the complexity of the singular func
tion. 

Comparison With Known Results. For a tetrahedral punch, 
n = 3, a(4>), and a(p, 4>) become 

L 
a(<t>)= :, -7r/3<4><7i73 

COS0 

o-(p,</)) = ^(0)cosh"1(a(</>)/p), -ir/3«j><ir/3. (30) 

Both expressions in (30) are repeated for the other two intervals 

with appropriate changes in 4>. From (26), we have the force 
indentation relationship due to the logarithmic singularity of 
giW>) as 

P = 
1.7773/x62 

(31) 
(1 - v)t&na 

and the area of contact in terms of the indentation becomes 

A = 1.895 — j~ . 
tan a 

(32) 

The numerical solution due to Hartnett's method (Barber and 
Billings, 1990) is 

*2 

P = 
1.7725^ 

(33) 
( l - c ) t a n a ' 

and from a private communication with Barber, the area is 

/I = 1.816—2~. 
tan a 

(34) 

Comparison of (31) and (33) leads to a percent deviation of 
only 0.27 percent. The percent deviation between (32) and (34) 
is 4.4 percent. This is very good considering that the domain 
of contact is taken to be a triangle when each side of the triangle 
should be slightly curved as Hartnett's method suggests (Barber 
and Billings, 1990). Barber's relationship, 

P=±m^t (35) 
(1 - c)tana 

compares well with (33), with a percent deviation of 4.3 per
cent, but the domain of contact is erroneous since there should 
not be any sharp corners at <j> = 0, 2ir/3, and 47t73 as depicted 
in his expression for a(4>), 

««>) = 
45(l+VT-cos</>) 

-7 r / 3<0<7r /3 . (36) 
37rtanacos</> 

Therefore, the present method approximates very well the 
shape, size, and area of contact of a tetrahedral punch in
denting an elastic half-space. 

Similar to what was done with the tetrahedral punch, except 
that n = 4 for the quadrilateral pyramid, we obtain the fol
lowing expressions for the force and area 

1.4906/x52 

, ,4 = 1.579 
tan2a' 

(37) 
(1 -c ) tana 

In a private communication, Barber calculates the numerical 
solution for the area as 

/1 = 1.496—2~. 
tan a 

(38) 

The expression for the area in (37) compares well with that of 
(38). The percent deviation is 5.5 percent. 

For n > 5, comparisons cannot be made since these problems 
have not been done before. We can note that the coefficients 
for the forces should be less than that obtained for the tetra
hedral punch and greater than that of the conical punch. Note 
that the coefficient decreases as the number of faces (that is, 
ri) increases. It can be shown that as n becomes very large, we 
obtain a well-known force displacement relation for the conical 
punch (Galin, 1953) which is solved exactly as 
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p = -
4iid2 

and 

ir(l — j<)tana 

452 

Titan a. 

(39) 

(40) 

Punch Displacement. We will determine how well the dis
placement due to the approximate stress distribution matches 
the prescribed displacement. First of all, the prescribed dis
placement is given by (2) and repeated here for - ir/n < 4> < 
•win, 

co(p ,</>) = 5 - tanacos^. (41) 

We want w(p, 4>) in terms of L. Using (24) and (25), we obtain 
a relationship between L and d independent of P 

L = 
(3/^,- /2^)5 

id \F ataxia 

Now, we have w(p, </>) in terms of L, 

wIiFiL 
w(p,</>) = 

3/.F.-AF, 
— pCOS<£ tana. 

(42) 

(43) 

Remember that 5 is the indentation from z = 0 to the apex 
and that b/L & tana. 

In order to obtain the displacement due to the approximate 
stress distribution we need to integrate numerically Eq. (10), 
which is 

c»(p,0) = / / j j P^' ° • p0dp0(j>o, (44) 

where R is given by the first part of (12). Rewriting u(p, <f>), 
we get 

g(4>o)cosh-'(g(4>0)/p0) 

"so V p2 + pi - 2pp0cos(</> - </>o) 

w(p,<j>) = HK II. podp0<l>0. (45) 

Recall that g(<£o) is infinite at <t> = - ir/n and ir/n. Therefore, 
we will obtain singularities when p = 0, <t> = - %/n and 
-w/n, and (p, </>) = (p0, </>o)- For simplicity we will limit the 
integration by ignoring the singularities, by considering the 
tetrahedral problem only, and by letting L = 1. The procedure 
is the same for n > 3. 

For n = 3, we must sum up three integrals, one for each 
interval. The integrals have been manipulated so that we in
tegrate over the same intervals. The singularities are ignored 
by integrating close to the point or line of singularity by using 
e = 0.0001, or 

o>(p,^)=Wl+W2+W-i 

W,=HK 

W2 = HK 

&.[ 
'(*0> g(4>o)cosh (a(0o)/po) 

VP 2 + Po - 2pp0cos(c/> - 4>0) 
; p0dpQd<l>o 

"(*o) 

W, = HK 

-J. 
3 

g(4>o)cosh~'(g((fto)/p0) 

V P 2 + PI~ 2pp0cos(4> - fa - 2?r/3) 

I : , . I. 
3 

g((j>)cosh"1(a(^o)/po) 

V p 2 + po - 2pp0cos(</> - 0o - 47r/3) 

Podpodcfro (46) 

Podpod<j)o-

Table 3 
£. = 1.0 

Approximate and prescribed displacement for 0 = 0, n = 3 

Table 4 
= 3, L = 

P 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

Approximate 
1.0 

P 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

Prescribed 

tana 

1.6562 
1.5562 
1.4562 
1.3562 
1.2562 
1.1562 

' 1.0562 
0.9562 
0.8562 
0.7562 
0.6562 

Approximate 
"(p,<>) 
t ana 

1.6537 
1.5276 
1.4211 
1.3224 
1.2289 
1.1303 
1.0531 
0.9697 
0.8888 
0.8103 
0.7340 

% dev 

-0 .15 
-1.84 
-2 .41 
-2.49 
-2.17 
-1.46 
-0.30 
1.41 
3.81 
7.15 
11.86 

and prescribed displacement for <j> 

Prescribed 

tana 

1.6562 
1.6062 
1.5562 
1.5062 
1.4562 
1.4062 
1.3562 
1.3062 
1.2562 
1.2062 
1.1562 
1.1062 
1.0562 
1.0062 
0.9562 
0.9062 
0.8562 
0.8062 
0.7562 
0.7062 
0.6562 

Approximate 

tana 

1.6537 
1.6792 
1.6661 
1.6387 
1.6018 
1.5578 
1.5079 
1.4530 
1.3939 
1.3308 
1.2640 
1.1946 
1.1220 
1.0470 
0.9689 
0.8889 
0.8070 
0.7234 
0.6387 
0.5537 
0.4720 

% dev 

-0 .15 
4.54 
7.06 
8.80 
10.00 
10.78 
11.19 
11.24 
10.96 
10.33 
9.35 
7.99 
6.23 
4.05 
1.33 

-1 .91 
-5 .75 
-10.27 
-15.54 
-21.60 
-28.08 

ir'3, n 

Obtaining K from (8) and P/L from (24), we get K in terms 
of a: 

K-
Ihana 

H(3I1Fl-I2F2 

(47) 

With the logarithmic singularity, gi(</>o), we obtain the results 
shown in Tables 3 and 4 for <t> = 0 and <p = ir/3, respectively. 
The largest percent deviation occurs at p = 2.0 with 0 = IT/ 
3. This is due to the fact that as we move away from the apex, 
<j> = 7r/3 - e gets further away from the line singularity at </> 
= 7r/3. Therefore, the greater deviations far from the apex 
are expected due to ignoring the singularity at <j> = 7r/3. Apart 
from these deviations the overall results prove to be good, even 
when ignoring the singularities. 

Conclusions 
A general relationship (26) between the force and vertical 

displacement for a regular pyramidal punch has been obtained 
in addition to the approximate area and shape of contact for 
maximum force. The results proved to be excellent. Therefore, 
by approximating the contact area as a polygon corresponding 
to the base of the pyramid punch, we obtain an accurate force-
displacement relation. It is believed that as n increases, the 
accuracy should also increase since the intervals of integration 
((21) and (23)) become smaller. As a result, a straight line will 
very closely correspond to the curved boundaries of the contact 
area. It can also be concluded that the stress for a regular 
pyramidal punch is approximated by 
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a(p,rl>) = -Kg((j>-m-ir/n)cosh '[«(</>-tmr/n)/p], 

iHLz3l<4><(J!L±Dl. (48) 

One may choose from the singularity functions, g{4>), de
pending on the accuracy and simplicity required. The above 
stress distribution approximates the punch displacement quite 
well. On the whole, the method presented in this paper allows 
the close approximation to the regular pyramid punch problem. 
Also, the method may be used to approximate subsurface 
stresses since the stress distribution in the half space will not 
depend largely on the distribution at the surface; therefore, 
error is lower than the error at the surface. Lastly, application 
of the method presented in this paper to the general pyramid 
problem may form the basis for future research. 
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Analysis of a Crack Bridged by a 
Single Fiber 
With the goal of assessing the accuracy of a widely used approximate method of 
analyzing bridged matrix cracks, an idealized problem representing a crack bridged 
by a single fiber is studied in detail. Our solution technique, which accounts for 
frictional slip at the fiber-matrix interface explicitly, involves the use of distributions 
of edge dislocations to represent the opening of the crack faces and the slip at the 
interface. Through this method, the solution is reduced to a set of three coupled 
singular integral equations which are solved numerically. The results are compared 
with those from the approximate method, and some sources of discrepancy between 
the two results are explored. 

Introduction 
The addition of reinforcing fibers to brittle ceramics some

times yields a composite that is significantly tougher than the 
monolithic ceramic. The mechanism by which reinforcing fi
bers toughen the composite is not completely understood, 
though there is much evidence that the nature of the fiber-
matrix interface plays an important role in the toughening 
mechanism. In particular, it is believed that a relatively weak 
interface which can debond prevents matrix cracks from break
ing the fibers in their paths as they propagate. 

In order to understand how the addition of reinforcing fibers 
toughens a composite, we need to understand, among other 
things, how unbroken fibers bridging a matrix crack influence 
the severity of the stresses near its tip. The influence of bridging 
fibers on the stresses ahead of a crack tip in ceramics reinforced 
by unidirectional fibers and loaded parallel to the fiber ori
entation has been studied by various workers (a partial list is 
Marshall, Cox, and Evans, 1985; Marshall and Cox, 1987; 
McCartney, 1987; Mori, Saito, and Mura, 1988; Budiansky 
and Amazigo, 1989; Thouless, 1989). In most of these studies, 
the bridging fibers, shown schematically in Fig. 1, are replaced 
by ' 'equivalent" closing tractions acting on the faces of a crack 
in a homogeneous body, as shown in Fig. 2. These closing 
tractions are smeared out and applied as a continuous distri
bution on the crack faces; the magnitude of the traction at 
any point is assumed to be a function of the local crack opening 
displacement, and this function is sometimes determined from 
a simple shear lag analysis. 

Although the approximation associated with replacing 
bridging fibers by equivalent closing tractions is claimed to be 
applicable to situations in which cracks are long compared to 
the fiber spacing (see Marshall, Cox, and Evans, 1985), the 
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validity of this approximation does not appear to have been 
investigated. While it is plausible that the influence of the 
bridging fibers far from the crack tip is captured by the closing 
traction approximation, the validity of this approximation is 
not obvious for bridging fibers immediately behind the crack 
tip. Since these nearby bridging fibers are likely to have the 
greatest effect on the stresses ahead of the tip, it is important 
to assess the validity of the closing traction approximation for 
such fibers. 

c - - - :> 

m t H t t u m 
Fig. 1 Matrix crack bridged by intact fibers 

t t t t H t t t t t t t 

l U I H I H I I H 
Fig. 2 Bridging fibers replaced by closing tractions on the crack faces 
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t t M M M 

l l l l l l l l 
Fig. 3(a) Configuration A: Two cracks impinging on interfaces 

I I It t f t I 

Problem Statement 
The problem under consideration, which we will call con

figuration/!, is shown schematically in Fig. 3(a) : Aninfinite 
strip occupying ~a<x<a is sandwiched-between two half-
planes, occupying x< - a and x>a. The half-plane x>a con
tains a crack along a<x<b, y = 0; the half-plane x 
< - a contains a crack along -b<x< - a , y = 0. The half-
planes and the strip are homogeneous, isotropic, and linear 

°o elastic, having identical moduli G and v. A tensile stress ayy 

= aa is applied at infinity. 
Thus far, the way in which the strip and the half-planes are 

connected has been left unspecified. Consider, for example, 
the strip and the half-planes to be perfectly bonded to one 
another; then, the problem would be simply that of two col-
linear cracks in an otherwise homogeneous infinite plane. By 
contrast, imagine that the strip and the half-planes can slip 
relative to one another once the interfacial shear stress becomes 
sufficiently high. Then, under a remote tensile load, the crack 
tips will open up at x = ± a (see Fig. 3(b)) as slip occurs 
over come portion of the interface. It can be seen, therefore, 
that the configuration under consideration represents a two-
dimensional crack lying along -b<x<b which is spanned, 
or bridged, by a fiber. The interface conditions we choose to 
be operative along x = ±a should reflect the conditions at 
the fiber-matrix interface. 

To model composites with weak interfacial bonding, the 
interfaces at x = ± a are taken to permit slip according to a 
Coulomb friction law, so that at any point on the interface, 
there is either stick, slip, or opening. Conditions for these states 
along the interface at x - a can be expressed as follows: 

l l l l l l l l 
Fig. 3(b) Configuration A after slip at the interfaces 

The purpose of this paper is to identify and solve a simple 
mechanics problem that can be used to assess the accuracy of 
the closing traction model. In particular, we will consider a 
crack spanned by a single fiber which is allowed to slip with 
respect to the matrix; of interest will be the degree to which 
the bridging fiber alters the stress intensity factor at the crack 
tip. To make the problem tractable, the fibers and the matrix 
are chosen to have identical moduli, and the fiber and the 
matrix are taken to be two dimensional. The resulting elasticity 
problem is one that can be solved both by the closing traction 
approximation and by a more rigorous dislocation distribution 
method. Since the latter method is highly accurate, it provides 
a basis for an assessment of the accuracy of the approximate 
method. 

Clearly, therefore, our purpose is not to provide a detailed 
quantitative picture of the stresses in the vicinity of bridged 
matrix cracks; that problem is extremely complex due to the 
inherent three dimensionality and elastic inhomogeneity. In
stead, our goal is to gauge the accuracy of a widely used 
approximate method in the specific case of a very simple fiber 
bridging problem. This accuracy might then be indicative of 
the accuracy of the approximate method when it is applied to 
more complex problems. 

Stick condition: 

dg 
x<0, I f f ^ l s /x l a^U- f = 0, h = Q\ 

dt 

Slip condition: 

1 <fe 
f < 0 , \aXy\=n\oxx\, — >0,/z = 0; 

Open condition: 

dt 

<Jxx=VXy = Q, h>0, 

(la) 

(lb) 

(\c) 

where 

g = Um[v(a + e, y)-v(a-e, y)] 
e-0 + 

h = Lim[#(a + e, y) -
£-0 + 

•u(a-e,y)]. 

u and v are the x and y components of the displacement, 
respectively, n is the friction coefficient which is assumed to 
be constant along the interface, and t is a time-like parameter 
that increases monotonically as loading proceeds. (We ignore 
the distinction between static and kinetic friction.) The con
dition (dg/dt)/axy > 0 is the condition of positive energy 
dissipation during slip. 

In applying the Coulomb friction law, the total stresses should 
be used, including any residual stresses introduced during com
posite fabrication, such as those due to thermal strain mismatch 
between the fibers and the matrix. The residual stresses are 
presumed to be present prior to the application of any loading. 
To simulate such a residual compression at the interface in the 
present two-dimensional idealization, the plane is subjected to 
a remote compression axx = - a0. Consistent with its inter
pretation as a residual stress, this remote compression is applied 
first, and then the remote tension ayy is increased monotonically 
from 0 to a„. 

This bridged crack problem will be solved accounting ex
plicitly for slip on the interface, and the mode I stress intensity 
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factor at the crack tip at x = b, KIA, will be computed. This 
stress intensity factor will then be compared with those ob
tained using various approximate methods, including a closing-
traction model for the bridging strip (described in Appendix 
A), to get an estimate of the accuracy of those approximate 
methods. 

Solution Method 
The solution method, which is similar to that mentioned by 

Rice (1968) among others, involves the use of continuously 
distributed edge dislocations to. represent the crack opening 
and the relative motion at the interfaces. The stress field in 
configuration A is obtained by superimposing the following 
two fields: (/) the stress field in an infinite plane subjected 
to remote stress ayy = aa, axx = —a0 and {ii) the stress field 
in an infinite plane containing continuous distributions of edge 
dislocations on a < \x\<b, y = 0 and on Ul = a. These 
dislocations are to be distributed in such a way that the final 
stress field (after superposition) leaves the line segments 
a< \x\ <b, y = 0 traction-free and satisfies Coulomb friction 
conditions at each point on \x\ = a, i.e., one of conditions 
( la) , (lb), or (lc) at each point on x = a and analogous 
conditions o n x = - a. For monotonically increasing tension, 
conditions (la) and (lb) may be simplified to 

t < 0 , axy< -/iff; 
xx'ft = 0'h = 0 

axx<0, ax 
dg. 
dt 

(2a) 

(2b) 

After taking advantage of the symmetry about the x- and 
.y-axes, the only nonzero dislocation density distributions can 
be represented by the following Burgers vector densities: 

(j>i(x)i on a<x<b, y = 0 
~4>i(-x)} on -b<x< -a, y = 0 

<t>i(y)i + <h(y)i onx = a,y>0 
-<t>3(-y)i + <l>2(-y)} onx = a,y<0 
03 O0 i - 0 2 0 0 j onx= -a,y>0 
-<fii(-y)i-4>2(-y)} onx= -a,y<0 

where i, j are unit vectors in the x andy directions, respectively. 
The functions 0., 02, and 03 are defined as 

d 
<M*) = 

02 0 ) = 

03OO = 

dx 

d_ 

dy 

d_ 

dy 

Um[v(x, -e)-v(x, +e)] 
£ - 0 + 

Hm[v(a + e, y) - v(a-e, y)] 

Lim [u(a + e,y)-u(a-e,y)] 
e-0 + 

for a<x<b 

forj>>0 

for y>Q. 

Under the monotonically increasing loading considered here, 
there is a slip length Ls, which is a to-be-determined function 
of (To,,, such that the stick condition holds on the interface for 
l_V I > Ls and the slip or open condition holds at each point 
on \y\ < Lx. Therefore, we have 

02OO=03OO=O for y>Ls. (3) 

Let sxx, sxy, and syy be the stresses associated with the dis
tributed dislocations; these are given by 

„b 
2ir(l-i>) 

syy(x, 0) = <kx(t)Kn(x, t)dt 

{
Ls 

0 
02(t)K12(x, t)dt + i(t)Kn(x, t)dt (4) 

2TT(1~V) 

2TT(1 - v) 

sxx(a,y)- <t>iV)K2i(y, t)dt 

f^c fit's 

+ \ 4>2(t)Kn(y, t)dt+ <M0*23 0' . t)dt (5) 
0 

sxy(a, y)- \ 01 (t)Kn(y,t)dt 

+ \ ' 02(0*320'. t)dt+ \ S <t>i(t)Kn(y, t)dt (6) 

where the kernels Ky are given in Appendix B. 
The traction-free condition on the crack faces may now be 

expressed as 

syy(x, 0)= -<Too (a<x<b). (7) 

Note that the symmetry conditions on the dislocation density 
functions ensure that sxy = 0 (and hence that axy = 0) on the 
line y = 0, so that Eq. (7) completely specifies the traction-
free conditions on the crack faces. The remaining conditions 
to be imposed are that at each point along 0 < y < Ls, either 
the slip condition prevails, 

sxy(a, y) = -fi[sxx(a, y) - o0], sxx(a, y) 

<a0,h(y)=Q (0<y<Ls) (8) 

or the open condition prevails, 

sxy(a, y)=0, sxx(a, y)=a0, h(y)>Q (0<y<Ls) (9) 

where the opening h is given by 

h(y)=-\ ' fo(t)dt. 
Jy 

Equations (7), (8), and (9) are a set of coupled singular 
integral equations, which can be solved numerically for 0i, 02. 
and 03 in conjunction with the conditions that there be net 
closure, 

0 , ( 0 ^ + 2 4>2(t)dt = Q \ <tn(t)dt+2\ 

and that the corner (a, 0) of the quarter plane x>a, y>0 be 
stress-free when a Coulomb friction law holds on the interface, 
as shown by the near-tip analysis of Dollar and Steif (1989), 

0,(0)-203(O) = 0. 

The function 4>t has an inverse square-root singularity at x 
= b, which is built into it by representing it in the numerical 
calculations as 

0 i ( * ) = 0 i M 
1 

v^ 
where 0i is nonsingular. Note that 02(*) is not singular at x 
= a, where the cracks impinge on frictional interfaces (see, 
for example, Dollar and Steif, 1989). From 0!, one can de
termine KlA, the mode I stress intensity factor at the crack tip 
at x = b in configuration A: 

Since y = Ls is the transition point between stick and slip 
zones, 02(y) must vanish aty = Ls (Dundurs and Comninou, 
1979). This provides a means of determining Ls as a function 
of ffo,,. In practice, however, it is convenient to represent 02 as 

02 0 0 = 0 2 0') r-
sLs-y 

(where 02 is nonsingular) and adjust o„ at a fixed value of Ls 

until the condition 4>2(LS) = 0 is satisfied. 
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Fig. 4 Comparison of slip length with small-scale slip approximation 
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On 

20 

Fig. 5 Comparison of bridged crack stress intensity factors computed 
by a detailed analysis and by a closing traction approximation (b/a = 
2, p. = 0.2) 

Some indication of the accuracy of our solution scheme can 
be gained by considering the limit as ox/o0 -~ 0. In this limit, 
we expect KM to approach that at the outer tips of two collinear 
cracks over a < lx\ <b, y = 0 in an infinite plane subjected 
to a remote tension of a„. For b/a = 2, the extrapolated value 
of K,A at aja0 = 0 is 0.898 \fb a„, while K, at the outer tips 
of two collinear cracks is 0.897 •sfb aa (Tada, Paris, and Irwin, 
1973). Further, when the slip length is small compared to a, 
the Ls/a versus a„/a0 curves approach those of small-scale 
slipping (Dollar and Steif, 1989), as expected (see Fig. 4). 

Additional confidence in our method was gained by applying 
it to some previously solved problems. The method was used 
to solve the problem of a single crack impinging on frictional 
interfaces at both tips, and the results were found to agree 
well with Dollar and Steif (1989). The method was also used 
to solve a boundary value problem described in Dollar and 
Steif (1991) that simulates an infinite crack bridged by fibers. 
The results from our method were found to agree well with 
their results. 

Results and Conclusions 
As mentioned in the Introduction, the purpose of the analysis 

of configuration A is to assess the accuracy of closing traction 
models in analyzing the effect of bridging fibers. To this end, 
we compare KIB, the mode I stress intensity factor computed 
using a standard closing-traction model (described in Appendix 
A), which K,A, the mode I stress intensity factor in configu
ration A, for b/a = 2 and /* = 0.2. In order to apply the 
closing traction model to our problem, we must select appro
priate values for two of the parameters in Eq. (A2): the limiting 
interfacial shear stress, T, and the fiber volume fraction, Vj. 
From previous comparisons between the Coulomb friction 
model and a constant shear stress approximation (Dollar and 
Steif, 1988, 1989), it is clear that T should be set equal to fiaa. 
Since the appropriate choice for the fiber volume fraction is 

2.0 

1.5 

0.5 

0.0 

detailed analysis 
closing traction approximation 

•3.0 

•2.0 

1.3 

•b/a = 1.1 

20 
Poo 

On 

Fig. 6 Comparison of bridged crack stress intensity factors computed 
by a detailed analysis and by closing traction approximation (V, = 0,5, 
/« = 0.2) 

less clear, we will compare for the entire range of possible 
volume fractions, 0 < Vf < 2/(b/a+ 1), the upper limit cor
responding to the case where the crack tips at x = ± b almost 
impinge upon the adjacent fibers. Figure 5 shows KIB (dashed 
line) plotted along with KIA (solid line) against am/a0. It can 
be seen that there is a significant difference between K,A and 
KIB. As a„/a0 — oo, KJB approaches aa-\fwb, the mode I stress 
intensity factor at the tip of a traction-free crack of length 2b 
in an infinite plane subjected to a remote tension of o„. Thus, 
the approximate closing traction analysis predicts the effect of 
the bridging fibers to die out as the applied stress increases, 
in contrast to the predictions of the more careful analysis of 
configuration A. 

The value of b/a can be thought of as being related to the 
stage of growth of the bridged matrix crack. A value close to 
unity corresponds to a short crack, most of which is spanned 
by the bridging fiber, and larger values corresponding to longer 
cracks. The maximum possible value of b/a is that at which 
the crack tips at x = ± b impinge on the adjacent fibers. In 
the comparison just made between KIA and KrB, b/a was fixed, 
representing a particular stage of matrix crack growth. K1A 
was computed for this value of b/a, and KIB for comparison 
was computed for various values of the volume fraction Vj in 
the possible range 0 < Vj < 2/(b/a+l). The comparison 
between KIA and KIB can also be made from a different per
spective: Vj may be fixed, and K,B for this value of Vj can 
be compared with K1A computed for various values of b/a in 
the possible range, 1 < b/a < ( 2 - Vf)/Vj. This would indicate 
how KIA compares with Km when configuration A represents 
various stages of growth of a matrix crack bridged by a single 
fiber. In Fig. 6, we plot K1B for Vj = 0.5, and KIA for several 
values of b/a in the possible range 1 < b/a < 3, against aa/ 
a0. From Fig. 6, as well as from Fig. 5, it appears that the 
closing traction model generally underestimates the closing 
effect of the bridging fibers. 

It is possible to gain some insight into why the closing trac
tion model is in error. To do this, recall that there is a chain 
of assumptions involved in using the closing-traction 
model: that bridging fibers can be replaced by closing trac
tions equal to the tensile stress in the fiber, that these closing 
tractions can be smeared out over the crack faces, even near 

• the crack tip, and that the stress in the fiber can be related to 
the crack opening by a shear lag analysis. (Closing traction 
models used by some workers, e.g., McCartney (1987) and 
Thoules (1989) do not use the third assumption; they use dif
ferent methods to relate the closing tractions to the crack 
opening.) Comparing KIA and KIB gives us an idea of the error 
introduced by making all three assumptions simultaneously. 
To separate the errors associated with the various assumptions, 
we consider the following two problems, where we make the 
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tensile stress in the strip overestimates the closing effect slightly, 
while smearing out these closing tractions overestimates the 
closing effect significantly. Since, on the other hand, the clos
ing traction model predicts a weaker closing effect, the shear 
lag approximation must be substantially underestimating the 
load borne by bridging fibers near the crack tip. 

Summary 

A two-dimensional problem that represents a crack spanned 
by a single fiber has been solved accurately by using continuous 
distributions of edge dislocations, which leads to a set of si
multaneous singular integral equations. This solution provides 
a means of assessing the accuracy of some approximate models 
of fiber bridging which involve the replacement of bridging 
fibers by equivalent closing tractions. In the problem studied 
here it was found that the standard closing traction model of 
fiber bridging (described in Appendix A) predicts a substan
tially weaker bridging effect than that predicted by the more 
detailed analysis. More specifically, smearing out the effective 
closing tractions into a continuous distribution on the crack 
faces artificially increases the bridging effect, while using a 
simple shear lag analysis to relate the effective closing tractions 
to the crack opening underestimates the load borne by the 
bridging fiber. The latter effect clearly predominates. 

It must be acknowledged that the standard closing traction 
model is severely tested when applied to the problem of a crack 
bridged by a single fiber. However, even for long cracks bridged 
by many fibers, one suspects that this approximate model will 
not represent bridging fibers close to the crack tip any more 
accurately than it represents the bridging fiber in the problem 
studied. Since it is the bridging fibers close to the crack tip 
that have the most significant effect on the stresses ahead on 
the tip, it is suggested that the results of such approximate 
analyses of fiber bridging be utilized with caution. 

Fig. 8 Further comparison of bridged crack stress intensity factors 
computed by different methods. Km: detailed analysis; ff/0: bridging fiber 
replaced by correct closing tractions; K/E: closing tractions smeared out 
into a uniform distribution 
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first two assumptions one at a time: In the first problem, we 
compute the stress ayy in the bridging strip at the crack plane 
in configuration A, and apply this distribution as closing trac
tions on the faces of an uninterrupted crack in an infinite plane 
as shown in Fig. 7. The resulting mode I stress intensity factor 
at the crack tip, referred to as KID, is given by 

•K J o 

Tc(x) 

^b2-x2 
dx 

where Tc(x) denotes the fiber stress at the crack plane in 
configuration A: 

TC(X)-<Jyy(X)\y = 0 f Or - fl < X < O . 

A comparison ofK!D with KIA will indicate the error introduced 
by replacing a bridging fiber by closing tractions equal to the 
stress in the fiber. In the second problem, we smear out the 
closing tractions used in the first problem, and apply them as 
a uniform distribution of magnitude 

i f 
~'b I 

T,dx 

on the faces of a crack lying on -b<x<b; the resulting mode 
I stress intensity factor at the crack tip is KIE. 

A comparison of KIA, KID, and K,E (Fig. 8) shows that 
replacing a bridging strip by closing tractions equal to the 
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A P P E N D I X A 
In this Appendix, a relatively simple version of the closing-

traction model is presented. The fibers bridging a long crack 
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(see Fig. 1) are replaced by closing tractions, equal to the tensile 
stresses in the fiber, acting on the faces of an uninterrupted 
crack in a homogeneous body, as shown in Fig. 2. These closing 
tractions are then smeared out into a continuous distribution 
p on the crack faces, which is expressed as a function of the 
crack opening, 8: 

P = / ( 5 ) . (Al) 

The spring function / has been determined in many different 
ways in the literature. We will determine it using a simple shear 
lag analysis, closely following Marshall, Cox, and Evans (1985). 

Consider a long matrix crack bridged by many fibers and 
subjected to a remote tension of ayy = a^, parallel to the fiber 
orientation, as shown in Fig. 9. The fiber volume fraction is 
Vf, and sliding occurs at the interface when the shear stress 
exceeds T, a constant. Let / be the length over which sliding 
has occurred, as shown in Fig. 10. If aj is the mean tensile 
stress in the fiber, we have 

af=i7~-y vs a 
for y < /. 

The mean tensile stress in the matrix, am, is given by 

ffoo ~ OfVf 
om = - 1 vf 

1-V/B y for y < / 

If, consistent with the analysis in this paper, the matrix and 
fiber are taken to have identical elastic properties, the slip zone 
ends when a,„ = oy = a„, so that 

/ = £ = . i " U. 

The crack opening, 8, is given by 

6 = 2 JV em)dy 

d-") r {of-om)dy 

O - « 0 / 2 

1G a 1 - Vf 

Hence, the relationship between the mean stress in the fiber 
at the crack plane, CTC, and the crack opening, as determined 
from a simple shear lag analysis, is 

2G 
(\-v)(\~Vf)a 

\fs. 

If the closing tractions are to be smeared out, we must reduce 
the magnitude of ac by a factor of 1/K/, so that the function 
/ i n Eq. (Al) is given by 

f(5)=K 
1G 

\-v(\-Vf)a 
Vs. (A2) 

We are finally left with the problem of a plane under remote 
tension ayy = an containing a crack with continuously dis
tributed closing tractions of magnitude p acting on the crack 
faces. This problem is solved numerically, and the stress in
tensity factor at the crack tip is determined. The numerical 
solution method was tested by using it to reproduce some of 
the results of McCartney (1987). 

A P P E N D I X B 

Expressions for the kernels appearing in Eqs. (4)-(6) are as 
follows: 

Kn(x,t)=-
x 

Kl2(x, 0 = 2 

Kn(x, 0 = 2 

Kn(y, t)=-

K22{y, t)=-2a 

J 1_ 
:-t x+t 

(x-a)[(x-a)2 + 3t2] (x + a)[(x+af + 3t2]] 
l(x-a)2 + t2]2 l{x+a)2 + t2]2 

t[t2~(x-a)2] t[t2-(x+a)2] 

l(x~a)2 + t2]2+[{x+a)2 + t2]2 

\a+t)[(a + t)2-y2} (a-t)[(a-t)2-y2}] 

[(a+t)2+y2]2 

[4c?-(y-t)2} 

[Ad2 + (y -1)2]2^ [4a2 + (y + t)2]2 

[(a-t)2+y2}2 

[4a2-(y + t)2]l 

- 1 1 
K2i (y, n=—-+—--

y-t y+t 

(y-t)[(y-t)2+l2a2] 

[(y-t)2 + 4a2]2 

(y + tmy+tf+na2}^ 

[(y + tf + Aa2]2 I 

Kn(y,0 = 

Ki2(y,0--

y[(a + t)2-y2] y[(a-t)2-y2} 

[(a+t)2+y2]2 [(a-t)2+y2]2 

(y-t)[(y-tV-4a2] 
Uy-tf + Aa2]2 

Kx(y, t)=-2a 

{y+tmy+tf-Aa2] 

[(y + t)2 + 4a2]2 

[(y-tf-Aa2] [(y + t)2-4a2fl 

[(y-t)2 + 4a2]2 [(y + t)2 + 4a2f\ 

_1 _ 1 _ 
y-t y+t 
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On Interface Crack Growth in 
Composite Plates 
Analysis of fracture growth, and in particular at interfaces, is pertinent not only to 
load-carrying members in composite structures but also as regards, e.g., adhesive 
joints, thin films, and coatings. Ordinarily linear fracture mechanics then constitutes 
the common tool to solve two-dimensional problems occasionally based on beam 
theory. In the present more general effort, an analysis is first carried out for de
termination of the energy release rate at general loading of multilayered plates with 
local crack advance either at interfaces or parallel to such. The procedure is accom
plished for arbitrary hyperelastic material properties within von Karman plate theory 
and the results are expressed by aid of an Eshelby energy momentum tensor. By a 
feasible superposition it is then shown that the original nonlinear plate problem may 
be reduced to that of an equivalent beam in case of linear material properties. As 
a consequence of the so-established principle, the magnitude of mode-dependent 
singular stress amplitude factors is then directly determinable from earlier two-
dimensional linear beam solutions for isotropic and anisotropic bimaterials and 
relevant at determination of cohesive and adhesive fracture. The procedure is il
lustrated by an analysis of combined buckling and crack growth of a delaminated 
plate having a nontrivial crack contour. 

1 Introduction 
In layered composite materials and structures (including sur

face layers and coatings) crack propagation, or commonly 
delamination, has become an issue of increasing technological 
importance. To analyze the matter, however, severe complex
ities may emerge mainly related to material properties and 
growth criteria in nonlinear situations. Accordingly, the major 
concern has so far been restricted to linear material behavior 
and self-similar crack growth, cf., e.g., Chai et al. (1981), 
Evans and Hutchinson (1984), and Yin (1985). 

The classical criterion for crack growth is associated with 
that of Griffith and to this end Storakers and Andersson (1988) 
have recently established a method to determine energy release 
rates within von Karman's plate theory in general circum
stances. Although the approach may apply to determination 
of stability of crack growth at perfectly brittle homogeneous 
materials, it is well known that crack propagation will in gen
eral be more involved, and in particular when regarding mode 
dependence and growth resistance. For homogeneous and iso
tropic materials cracks usually adapt themselves to propagate 
in mode I, while at bimaterial interfaces, mixed modes are 
rather the rule. 

When beam-type structures are at issue, usually the energy 
release rate at growth of straight cracks may, in an asymptotic 
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approximation, be determined by analytical means. At decom
position into stress intensity factors, however, two-dimensional 
theory must generally be drawn upon. In this spirit split bi
material beams have recently been analyzed by Suo and Hutch
inson (1990) for isotropic materials and additional results 
pertaining to a variety of geometry and material parameters 
have been summarized by Hutchinson and Suo (1992). 

When it comes to plates or, alternatively, shells, and with 
the present purpose in mind, it is then definitely advantageous 
to reduce the problem by one dimension for energy release 
rates to apply to corresponding beams. It may be shown then, 
by a feasible superposition procedure, that this may be readily 
brought about and associated stress intensity factors conven
iently determined. In particular, when shearing modes are un
coupled, results will be asymptotically exact. Regarding the 
remaining in-plane modes arising from opening and sliding, 
the decompositions by Suo and Hutchinson (1990), may be 
readily identified and also alternative approaches may be in
vestigated. In case of bimaterials with no unambiguous de
composition singular stress intensity factors may accordingly 
be determined for plates based on reduced beam results as 
epitomized by Hutchinson and Suo (1992). Once this issue is 
resolved, crack growth may be predicted in general circum
stances for specific growth criteria. 

2 Reduction of General Energy Release Rates for Plates 
to Beams 

The present issue concerns deformation and possible crack 
growth of a multilayer plate composed of an arbitrary number 
of lamina. For simplicity, though not without loss of gener-
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Fig. 1 Multilayered composite plate with a plane crack parallel to an 
interface 

<5ai 

ality, only a single crack, as shown in Fig. 1, is analyzed. Each 
lamina is locally homogeneous but otherwise arbitrary. Ex
ternal loading is prescribed either by dynamic or kinematic 
constraints or mixed ones. The crack as depicted in Fig. 1 must 
not necessarily be located between two dissimilar lamina, but 
only be assumed parallel to an interface. 

Mainly in order to also accommodate the case of buckling 
of thin plates, nonlinear kinematics within von Karman's ap
proximation is adopted. Thus, total strains, ea@, may be com
posed by a stretching term, e"s, and a curvature term, e*p, 
such that 

when expressed in displacements as 

1 

and 

ea0 — ~ (Wa]l3 + Mj3,a + «3,aM3,/3) 

ea0— X3Kafi, Kap— — U3iaf] 

(i) 

(2) 

(3) 

where, as in ordinary notation, Greek indices run from 1 to 
2. 

The constitutive behavior is defined by a strain energy func
tion locally for each individual plate member 

generating membrane forces 

dW 
N„a = : 

3e„ 

and bending moments 

Mafi = 
dW 
9KQ 

(4) 

(5) 

(6) 

with the notation simplified to em
a$ = ta&. 

In their approach to determine energy release rates also based 
on a complementary strain energy function, Storakers and 
Andersson (1988) introduced nominal membrane forces de
fined by 

dW n\ 
Sai = Z . (7) 

roman indices running from 1 to 3. 
As a consequence of (2) and (5), it then follows that 

safi = Nafi (8) 

and 
sai = Nafiu3yfi. (9) 

When a crack starts to grow smoothly by a local amount ba 
as measured in the normal direction na and shown in Fig. 2, 

./ 

n 
Fig. 2 Smooth delamination growth by an amount Sa in local normal 
direction, n 

the change of the potential energy of the system 8U reduces 
to 

-8U=Q)\\Pa0\\nanSi&ads 

where 
Pa/3 — Wbap — SayUy£ + MayU^yp — QaUii& 

(10) 

(11) 
Storakers and Andersson (1988), Qa denoting the shear force. 

In particular, II II denotes the jump locally at the crack 
contour and Pa!3 corresponds to a plate version of Eshelby's 
energy momentum tensor satisfying the balance equations 

PaP,a—PiUj,g — 0 (12) 

where p{ is the pressure on plate surfaces as shown in Fig. 1. 
In order to determine explicitly the energy released per unit 

area of local crack growth, it is advantageous to align a co
ordinate direction X\ normal to the crack front yielding the 
energy release rate 

I I P l 1 « = l » ' - S l a M B i , + M l a M 3 i a , - g i l l 3 . l l . (13) 

By the coordinate system so introduced, simple continuity 
conditions will result at summation of individual lamina. Thus, 
regarding dynamic variables for in-plane membrane forces 

(*) 

and shear forces 

1° - V C( 

Q? = SGi*'. 

in the notation depicted in Fig. 3, where k= 1,2. 
Likewise, regarding bending moments 

(14) 

(15) 

(16) 

where x°, x\k) denotes the distance to the middle surface of 
the individual plate, members referred to a common surface. 

Regarding kinematics, and, in analogy, for compatibility in 
conformity with the Kirchhoff plate assumption, 

Ua —X3 « 3 , a - « a _ ^ 3 u 3 , a > u3 ~ " 3 > «3 ,1— M 3, l i U ' ) 

where u°, u3
k) denotes the displacements at the middle surface 

of individual plate members and due to continuity, (17) admits 
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Fig. 3 Split element with resulting plate variables 

further differentiation with respect to d/dx2, i.e., along the 
crack front. 

Summing up thus far and making use of the continuity 
conditions (14) to (17), the specific form of the energy release 
rate as given by (13) reduces to 

- E ^ ' - s M - A / M ) . (18) 
k 

The general approach for plates and resulting Eq. (18) was 
sketched earlier (Storakers, 1989) to apply also to shells, but 
details are still open for exploration. In case of imperfect plates, 
the matter may be formally dealt with within the Marguerre 
theory. 

From several points of view it now proves advantageous for 
the so-posed plate problem to formally reduce the expression 
for the energy release rate by a superposition resulting in an 
equivalent split beam. Thus, a local homogeneous superpo
sition at the crack front with 

«?=-«? , (19) 
together with associated derivatives, will render the defor
mation to vanish locally at the uncracked plate, as proposed 
in an ad hoc manner in particular situations by earlier writers, 
but more decisively and generally by Gudmundson (1989). 

The associated superposed strains and curvatures then be
come 

— O O —Q Q ("tfW 

respectively, with dynamic variables accordingly. 
By expressing the so-introduced locally homogeneous su

perposition by aid of variables associated with the cracked part 
of the plate, the resulting strains and curvatures become 

where k=\,2. 
Then, from a purely formal point of view, the energy release 

rate as given by (18) may be rearranged as 

P= - S (WM+WM-stfuXl-slSu!*} 
k 

-MISKXP-MWKLV). (22) 
So far the strain energy function IV, (4), has been left un

specified, but towards a resulting true superposition principle, 
it is obvious that material linearity is required. Involving the 
restriction that Wis a quadratic though still otherwise arbitrary 
function of eap, Ka$, then 

2 ^ = V a ? + % a S > (23) 

with an obvious associated reciprocity relation 
saff^aff +MapKap - Sa0eal3 + MapKap. (24) 

Thus, based on the introduced kinematic superposition (19), 

(20) with resulting continuity conditions (14), (16), (17) and 
the prescribed constitutive linearity (24), then (22) reduces to 

+ ( M $ + Af # ) ( « # + «$)] - (*£> + *{?)(«$ + «*,,) 

-(M!*>+M|*>)(«i?»+ «£}>)] (25) 

remembering also the kinematic continuity at the crack front, 
i.e., 

« $ + « $ = 0, u$ + u$=0, « # 2 + H £ 2 = 0 (26) 
by (17). 

Through the Foppl strain definition, (2), finally the strain 
energy release rate simplifies to 

r - r A l(Sla +Sia )(eia + 6 la ) 
2 k 

+ (M{f»+M|f))(K[f) + «1
(f))]. (27) 

As a consequence the energy release rate, as originally ex
pressed for a nonlinear cracked plate, now follows simply for 
an equivalent split beam, although all three modes of opening, 
sliding, and shearing are involved. This technical result might 
possess some intrinsic virtues as regards energy release rates, 
but the main objective is continued partitioning of fracture 
modes from beams modeled in one or two dimensions. 

3 Mode Partitioning of the Energy Release Rate 
Already at homogeneous material behavior it is well known 

that the prediction of crack growth may not ordinarily result 
in a very high accuracy in mixed-mode situations when based 
on a simple energy balance criterion. Instead, it is customary, 
in Irwin's spirit, to decompose fracture parameters into the 
three fundamental crack modes by stress intensity factors. A 
crack growth criterion then has to be defined in a form 

f(K„K„,K„d = 0 (28) 
to be given for a specific material. 

In particular, when related to the energy release rate, 

G = l-^~ (Kj + K2,,) + ±- K)u (29) 
E 2ji 

for an isotropic material in ordinary notation, (28) may apply 
to one particular form when G=GC within Griffith's approach. 

It is evident by (29) that in case of homogeneity, and at least 
cubic isotropy, the stress intensity factors are uncoupled and 
readily identified by the expression for the energy release rate. 
This is also so in more general situations and as regards the 
present plate theory when shearing modes are uncoupled from 
in-plane loading, resulting in opening Kj and sliding Kn, the 
stress intensity factor KUI may be immediately identified by 
(27) and (29) to read 

KUI- 2j V- <-Sl2 A« 12 +£12 ) (Iv) 
k 

when in-plane properties may be arbitrarily anisotropic. 
The remaining modes are due to extension and bending given 

explicitly only by a coupled effective value. To attempt a fur
ther decomposition it is worthwhile, for simplicity, to first 
retain the assumptions of in-plane homogeneity and isotropy. 
Further, to make contact with engineering notation, new vari
ables are introduced according to Fig. 4 such that by (27) and 
(29), an effective value becomes 

K) + K),= E . [-(/Ve,+MK,) + /Ve2 + M*K2], (31) 
2(1 -v) 

where, due to equilibrium, 
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Fig. 4 Split element with resulting beam variables after superposition 

M*=M+N(h + H)/2. (32) 

To determine the stress intensity factors individually in a 
nonapproximate manner is only possible in truly symmetric 
and antisymmetric situations. Thus, in case of symmetry-in
duced geometry, h = H, and loading, N= 0, then at pure bend
ing, K\= —K2 with 

K) = -JTMKI, Kn=Q (33) 
( 1 - i n 

exactly. 
Likewise, in purely antisymmetric situations such that h = H 

and N= —2M/h, then at antisymmetric bending K\ = K2 and 

K,= 0, K},= 
3E 

8(1 2\ -V) 
MK, (34) 

These results may also be combined and are asymptotically 
exact when t«a (characteristic thickness to crack length) in 
the sense that it is tacitly assumed inherent in the present plate 
model. Thus, at combinations of loadings resulting in (33) and 
(34), mixed-mode fracture toughness results are viable for de
termination. Some particular cases for pure and mixed-mode 
split beams, also in case of orthotropy, have been illustrated 
by Hutchinson and Suo (1992). Although in an exact asymp
totic sense cracks are required to be of infinite length, these 
writers have concluded that characteristic lengths of approx
imately a>3t will suffice at reasonable accuracy. 

Explicitly, (33) and (34) may also be recovered from earlier 
direct beam results as given, e.g., by Tada et al. (1985). In the 
case of pure bending, these writers have also proposed a more 
general approach, and with nonsymmetric properties implying 
«\ ^ - K2. Such an attempt is, however, deemed to be approx
imate. 

When based on (31), (32), it should be remembered that in 
(33) and (34) two solutions exist for K, and Kn, respectively, 
and they must be properly identified. If K,<0, the solution is 
physically inadmissible, as crack lips will be overlapping in the 
present situation. For Kn, the proper sign of sliding must be 
in conformity with the external loading. 

Starting from a different assumption, Williams (1988) has 
argued that for two beams having equal curvatures, pure mode 
II will result and admit decoupling in general situations. Again, 
this proposal will simply predict mode I at pure bending, al
though it is known from two-dimensional analysis in this sit
uation that the ratio Kn/Kr is generally nonzero, except in case 
of full symmetry. In particular, when the thickness of one> 
member is vanishing, the mode ratio will take on a maximum 
value Kn/Ki of 0.786 as determined by a boundary collocation 
method (Cotterell et al., 1985) and 0.777 by an integral equa
tion method (Thouless et al., 1987). 

Additional two-dimensional results for a split beam sub
jected to stretching and bending are given by Suo and Hutch
inson (1990) for isotropic bimaterials. For the particular case 
of homogeneous beam properties at pure bending, the mode 

Fig. 5 Ratio of stress intensity factors, KalK/t as function of thickness 
ratio, hlH, for pure bending of a split beam according to Suo and Hutch
inson (1990), (35) and (36), respectively 

results for the thickness ratio are reproduced in Fig. 5. It may 
be seen in particular that a mode II component may be sub
stantial, although the external loading is due only to symmetric 
bending moments. 

Although similar findings are available from two-dimen
sional analysis, also in more general situations it might be 
tempting in the spirit of Williams (1988) to attempt a decom
position of stress intensity factors from kinematic symmetry 
and antisymmetry arguments based on the Euler-Bernoulli 
beam theory (Storaker's (1989)). 

Possible candidates may be based on maximum strains at 
the crack tip resulting in 

Kn_hKi+HK2 

Kj flKi-HK2 

or deflections such that 

Kj KX - K2 

(35) 

(36) 

as related to Fig. 4. 
Based on (27), (35), and (36), it is readily found that in both 

cases the energy release rate decouples. The resulting ratios 
K/f/K/ are also given in Fig. 5 as a comparison to exact ones 
by Suo and Hutchinson (1990). It is evident though that the 
accuracy is at most moderate, although symmetry assumptions 
based on strains, (35), are favorable as compared to deflec
tions, (36). Whatever measures are adopted though, when the 
thickness of one beam member is vanishing, i.e., K2—Q, it is 
inevitable that K/j/Kj—l, ( K 2 / K I < 0 ) , which is in substantial 
contrast to the exact value 0.777 as indicated above. 

An alternative to determine energy release rates in reduced 
form (and applicable also to plates) was recently proposed by 
Schapery and Davidson (1990). In particular, their approach 
is based on resulting internal forces and moments acting at 
crack-tip boundaries. For decomposition into stress intensity 
factors, Schapery and Davidson (1990) rely on finite element 
solutions as demonstrated by way of particular illustrations. 
These writers also recognize the advantage of possibly avoiding 
numerical two-dimensional solutions, and by conjecture, es
sentially assume ̂ /-values to be independent of in-plane forces. 

Following this approach, in the discriminating case of pure 
bending as analyzed previously, the conjecture does indeed 
lead to nonvanishing KJrvalues, although in the extreme case 
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of vanishing thickness, Kn/Kj turns out to be V3 in contrast 
to the exact value 0.777 in case of homogeneity and isotropy. 
Thus, to arrive at a general but reasonable approximation for 
beams of stress intensity factors, it is not to be anticipated 
remembering also the severe kinematical constraints intro
duced by the Euler-Bernoulli theory in two-dimensional situ
ations. 

Recapitulating then members discussed so far (such as lam
inates, sandwich plates, and thin films) may manifest them
selves through nonlinear plates as outlined above, and again 
by the superposition principle, the resulting energy release rate 
will reduce locally to that of crack growth in an equivalent 
linear beam. Toward prediction of mode-dependent fracture, 
however, it is notoriously well known that for interface cracks 
in bimaterials, stress intensity factors may not be unambigu
ously defined. Thus, separability of modes at interface cracks 
of anisotropic bimaterials is much restricted. For one thing, 
necessary and sufficient conditions have only recently been 
detailed by Qu and Bassani (1988) for purely two-dimensional 
situations or when in-plane and antiplane deformations de
couple. The resulting standard square-root singularity has then 
been explicitly illustrated for a finite Griffith crack by Bassani 
and Qu (1989). 

At the interface of a plane isotropic bimaterial case, singular 
stresses may be expressed by aid of complex variables in the 
notation by Rice (1988) as 

<Jl2 + iO\2 = -7T— (37) 

\I2-Kr 

where 

K=K{ + iK2, £ = 7-In 7 ^ | (38) 
2TT l+p 

with (3 given by the Dundurs parameter, 

^1-2^-^1-2,0 (39) 

in(i-v2) + mi-vi) 
for Hookean materials. 

For a bimaterial, when stress amplitudes are given in a com
plex fashion, their dimension also becomes awkward. At first 
instance, however, this does not affect the original problem 
posed to reduce results for nonlinear plates to that of nonlinear 
beams, as at any event, the energy release rate will be a real-
valued quantity (Malyshev and Salganik, 1965), and in par
ticular, for isotropic solids (Hutchinson et al., 1987), 

V Mi M2 / 4cosh ire \m n2/ 4 

Thus, once the energy release rate has been identified in 
equivalent beam variables, the composition of singular stresses 
may be immediately read off from the two-dimensional results 
given for individually isotropic bimaterials (Suo and Hutch
inson (1990) and also orthotropic ones, Suo (1990)). 

Only when /3 = 0 in (39) do the stress amplitudes in (38) reduce 
to the conventional stress intensity factors. The energy release 
rate may then be decomposed into 

2 \ Ei E2 J 4 \m H2/ 

(Hutchinson, 1990), with all three modes unambiguously pres
ent at uncoupled shearing. 

Toward identifying fracture parameters, for representative 
materials, e is usually expected to be small by a few percent 
(Suga et al., 1988). A pragmatic view used to obtain stress 
intensity factors, as advocated in particular by Hutchinson 
(1990), is to suppress the oscillatory material behavior and 
adopt /3 = 0. In this approximation, the ratio of stress intensity 
factors will reduce to an ordinary value while the energy release 

f\ 

s 

>• 

* 2 

x. 
•4 9 a 

Fig. 6 FEM mesh for a circular delamination under uniaxial nominal 
compression 

rate may be left unaffected. The matter will not be elaborated 
upon further at this time. 

4 Buckling and Growth of a Circular Delamination 
Under Uniaxial Compression 

The efforts so far have been focused on an efficient method 
to determine energy release rates eventually and ensuing iden
tification of stress intensities at nonlinear kinematics. What 
remains to elaborate on is a procedure to predict and analyze 
interf acial fracture initiation and possible growth. To deal with 
the latter problem (which is, essentially, to determine a moving 
boundary), a recent method proposed by Nilsson and Gian-
nakopoulos (1990a, 1990b) will be drawn upon. 

Crack growth for delaminated plate members had been dealt 
with earlier, to a large extent, for rectilinear and circular crack 
contours; (e.g., Chai et al., 1981; Evans and Hutchinson, 1984; 
and Yin, 1985) and by commonly implying material homo
geneity and isotropy. On the other hand, for nontrivial con
tours, cracks seem to have been analyzed only for initiation. 
To that end and in order to also accommodate combined buck
ling and crack growth, the necessary details will be briefly 
outlined. 

The problem in formulating von Karman equations for bi
furcation buckling and post-buckling is a standard one and 
has essentially been posed previously, save for the equilibrium 
equations 

Sc0,a+Pp = O (42) 
and 

Mafl,af> + sa3,a+P3 = 0 (43) 
in the previous notation, and obvious boundary conditions 
consonant with Fig. 1. 

A particular member to be analyzed was chosen as a single 
embedded circular delamination on a thick substrate subjected 
to uniaxial nominal compression. To deal with delamination 
growth a finite element mesh, combined with an automatic 
mesh generator, was designed as shown in Fig. 6. Due to 
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symmetry of the stated problem, only one quarter was mod
eled. Thus, the global plate illustrated was rectangular with 
side lengths 18a and 12a—the circular delamination having the 
radius a. 

When the prospective crack front moves, the associated mesh 
must be updated. Then the front is adopted as an internal 
boundary and is displaced. The associated change of element 
angles was minimized (in a weak sense) resulting in a new 
effective mesh in a way as detailed by Nilsson and Gianna-
kopoulos (1990a, 1990b). 

The finite element method itself was based on the plate 
theory using four-noded shell elements (Bathe, 1982) and im
plemented in a finite element code Solvia. The program utilizes 
large deformations in the sense of full Green-Lagrange finite 
strains and Mindlin's plate theory. For computational con
venience, these features were presently adopted. With small 
strains and transverse deflections being of the same order of 
laminate thickness, however, the actual difference from the 
moderate rotation von Karman theory was found to be neg
ligible. 

The illustrated procedure was chosen partly for technical 
reasons and, for simplicity, the homogeneous isotropic linear 
elastic material behavior, E,v, was adopted. Further, the sub
strate was assumed to be substantially thicker than the plate 
lamina, t. 

As a consequence, the kinematical constraints 

«3 = 0, M3,a = 0 (44) 

were enforced for the thick plate including the internal bound
ary. 

For nominal uniaxial compression, the conjugate boundary 
conditions for the global plate reduce to 

Mi=-9ae 0 ) ffi2 = 0 (45) 

for X\ = 9a and 

<72c = 0 (46), 

for Xi = 6a in conformity with Fig. 6. For explicitness, t/a — 0.05 
and c = 0.3 were chosen. 

Once the boundary value problem had been formulated in 
the manner outlined, the bifurcation buckling problem was 
solved first. It was found then that buckling initiated at 
eor = 2.52 (t/a)2, the critical value of nominal strain as pre
scribed in (45). The associated buckling mode was then drawn 
upon to carry out a post-buckling analysis. 

The results for transverse displacements u^/t of the delam-
inated plate are shown in Fig. 7 for two loadings e0= 1.03 ecr 

and 1.28 e%, respectively. It is evident then that the relative 
change in shape is not substantial when normalized displace
ments are still less than unity. What is more noteworthy, how
ever, and to be further elaborated upon below, is that contact 
will occur at x\ =a, x2 = 0 at higher loading. 

The resulting forces Nla and moment Mu aligned locally at 
the crack front (and necessary to determine energy release rates) 
are readily found from the nonlinear plate analysis, and sub
sequently also the associated beam variables from the super
position principle. In order to reproduce the superposed beam 
variables as in (27), it proved practical to introduce nondi
mensional forms according to 

Et 
- I (Sla+Sla), 

Mu=-
1 
Et' -J (Mn+Mu) 

and also similarly for energy release rates 
2 / \ 4 

a,'-» v7 c 

and stress intensity factors 

KIJI= 
1-
Et' 

K[, Kn 

where accordingly, 

G = KJ + Kj, 

(47) 

(48) 

(49) 

(50) 

at vanishing Km. 
Shear forces 7V*12 were found to be of the order of one percent 

as related to compressive forces Ny \, and accordingly, the mag
nitude of the stress intensity factor Km proved to be negligible 
and will not be discussed further. A similar feature in resem
bling circumstances has been reported by Whitcomb (1988) 
based on three-dimensional finite element results and by Chai 
(1990) for a Rayleigh-Ritz procedure. 

The values of the remaining local beam variables are repro
duced by a coordinate s scaled along the current crack contour 
as was shown earlier in Fig. 2 (generally) and in Fig. 6. In Fig. 
8 the results for Nn,Mu are shown for two cases of the external 
loading where the smaller one corresponds approximately to 
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initiation of buckling and the larger one to an increase of 25 
percent. As may be seen, the reduced compressive force Nu 
(s) is fairly evenly distributed along the crack contour in both 
cases, although their magnitudes differ by a factor of ten. The 
bending moment Mu (s) increases along the crack front at 
initial buckling and substantially so at higher loading. 

Extreme values for the beam variables appear in the loading 
direction and its transverse. In Fig. 9, pertinent results are 
shown as a function of nominal strain up to twice the value 
for initial buckling. The compressive force increases mono-
tonically at the crack front, whereas the bending moment lo
cally reaches a maximum at about 20 percent above the nominal 
buckling strain and eventually changes sign at 65 percent in
dicating approaching crack-lip overlapping. 

Once the reduced beam variables have been determined, the 
corresponding stress intensity factors may be readily read off 
from the two-dimensional results by Suo and Hutchinson 
(1990). In particular, for identical isotropic materials and a 
lamina of vanishing thickness, the stress intensity factors re
duce to 

KI = -JZ (-iVnCOS(o-2V3Afnsina)) (51) 

Kn=-j- ( - Ni i sinu - 2V3 Mi j cosco) (52) 

where w = 52,l°. 
It should be observed first that when 7Vn> -2V3A/ntana), 

Kr becomes negative and crack lips will be expected to overlap. 
Presently, for the case studied, this will occur at 5 = 0 for 
e0= 1.28 e%. Thus at still higher loading, when physically ac
ceptable results are to apply, contact has to be considered when 
two-dimensional theory is observed. In contrast, from Fig. 9 
it may be seen that at e0= 1.28 •4'' the bending moment (im
plying positive curvature) is still negative everywhere, and based 
on plate theory contact will not be expected until e0= 1.65 e". 
In retrospect then, the venture of extracting stress intensity 
factors from pure beam theory appears even less appealing. 

Accordingly, the difference between results based on re
sulting forces and moments on one hand and local stress am
plitudes on the other should be clearly emphasized when crack 
closure is at issue. The matter has recently been analyzed by 
Chai (1990) at buckling of embedded elliptical delaminations 
based on a Rayleigh-Ritz procedure. In particular, for the 

circular case, Chai found no closure to occur at uniform 
compression whether at the crack front or elsewhere. At un
iaxial compression, however, Chai found that closure will al
ways occur and initiate at crack tips. In the present case, 
overlapping is expected at e0= 1.25 ir

0 in good agreement with 
the value 1.28 above. The influence of contact on delamination 
buckling is otherwise little known, but the matter has recently 
been approached in the present circumstances also by Whit-
comb (1989a, 1990). In the case of uniform compression and 
multiple delaminations based on plate theory Larsson (1991) 
has found that the influence on energy release rates might be 
substantial. 

In Fig. 10 the stress intensity factors Kt{s) and Ku(s) are 
given for the two load levels. Both factors increase monoton-
ically along the crack front at both loadings yielding maxima 
transversely to the applied nominal uniaxial compression. It 
should be observed, however, that at increased loading Kf 
decreases for s<0.2, approximately, again remembering that 
contact may be imminent. 

In Fig. 11, stress intensity factors at the extreme points at 
the crack contour are given as a function of the compressive 
loading. At the maximum values and transversely to the load
ing, both factors increase monotonically and are of fairly equal 
magnitude. At the loading direction KH also increases mon
otonically, but considerably less so. As has already been prem
ised, K, reaches a maximum, approximately at ten percent 
above the buckling load, and at higher loading, 28 percent, K{ 
is expected to change its sign. 

In order to predict fracture initiation and growth of delam-
inated members, a growth criterion is of necessity. It is a 
common experience in fracture mechanics that, in general, 
critical values for sliding modes (Kn) are higher than those of 
opening (Kf). Several criteria for composites have been pro
posed and formulated based on particular material-dependent 
parameters, some of them summarized by Storakers (1989), 
and in general circumstances discussed as to consequences by 
Hutchinson and Suo (1992). Presently, and once a criterion 
has been established for a particular material expressed by aid 
of stress intensity factors, the automatic mesh generator worked 
out to simulate the evolution of the crack front may be directly 
applied. It goes without saying, though, that at anisotropic 
material behavior and nontrivial crack contours, determination 
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tour at initiation of growth and at entire front propagation 

of growth might be technically quite intricate. To complete 
the present intention and illustrate the method for growth 
prediction, the simple Griffith criterion 

G = GC (53) 

will be presently retained. From a recent review by Sela and 
Isai (1989) of fracture properties of different composite ma
terial systems, in case of graphite/PEEK (polyetheretherke-
tone), data may be well accommodated by Eq. (53) while, for ' 
instance, graphite/epoxy seems to exhibit pronounced mode 
dependence. 

In practical situations a typical value of <5C, (48), is of order 
unity and presently Gc = 0.281 was chosen to analyze the ev
olution of the crack front. 

In Fig. 12, the normalized distribution of the energy release 
rate, G(s)/Gc, is given for the initially circular crack front and 
shows a substantial variation. Evidently, the growth criterion 
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is first fulfilled at s=l, and accordingly growth will first be 
initiated transversely to the loading. 

In Fig. 13, the determined evolution of the crack front is 
shown for different values of the external loading based directly 
on computer results with the lacking smoothness at kinks in
dicating the accuracy. Growth is initiated at e0= 1.08 ir

0 and 
the whole front is finally moving at eo = 0.79 eZ. Thus, the 
external load required to sustain crack growth is steadily de
creasing, and at the last front shown in Fig. 13, it corresponds 
to e0 = 0.68 eCo. In this sense the system must be termed unstable. 

As emphasized, however, this result is sensitive to the par
ticular fracture criterion used. In Fig. 14, the ratio Kn{s)/K!{s) 
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is shown at local initiation of growth and at full crack length. 
Thus, although the moving front is almost of elliptical shape 
in the advanced stages of growth, as shown in Fig. 13, this 
feature might be closely related to the simple quadratic fracture 
criterion employed in (50) and (53). The predicted transverse 
delamination growth at buckling under uniaxial compression 
has, however, been observed experimentally for different ma
terials by several investigators recently, for instance, by Whit-
comb (1989b) for a toughened graphite/epoxy. 

5 Concluding Remarks 
It was shown that the energy release rate, due to smooth 

local crack growth along a delamination front for plate mem
bers at moderate rotations, proved to be equivalent to that of 
associated linear beams by an appropriate superposition pro
cedure. When constitutive coupling is not at hand, however, 
stress intensity factors KHI at shearing could be extracted ex
actly by beam analysis. A further general decomposition into 
in-plane mode-dependent variables proved to be of inadequate 
accuracy in general when based on beam theory and simple 
symmetry arguments. Instead, to determine the remaining stress 
intensity factors and to detect imminent contact, it proved 
powerful, by the introduced reduction of plate theory, to draw 
upon earlier asymptotic numerical analyses of split bimaterial 
beams. An effective method was devised earlier by finite ele
ments and an automatic mesh generator was employed to de
termine propagation of delamination fronts. Accordingly, the 
procedure proposed offers a unified analysis of the fracture 
process in fairly general circumstances. 
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Mori-Tanaka Estimates of the 
Overall Elastic Moduli of Certain 
Composite Materials 
Simple, explicit formulae are derived for estimates of the effective elastic moduli 
of several multiphase composite materials with the Mori-Tanaka method. Specific 
results are given for composites reinforced by aligned or randomly oriented, trans
versely isotropic fibers or platelets, and for fibrous systems reinforced by aligned, 
cylindrically ortho tropic fibers. 

1 Introduction 
Estimates of overall elastic moduli of composite materials, 

in terms of phase geometry and moduli, can be obtained by 
several well-known methods. For example, the Hashin-Shtrik-
man bounds which bracket the actual magnitudes of the moduli 
are available for many two-phase and multiphase systems 
(Hashinand Shtrikman 1963, Walpole 1969,1981,1984). Also, 
self-consistent estimates have been available for many years 
for such systems as aligned fiber composites (Hill 1965a), two-
phase media reinforced by spherical particles (Budiansky 1965), 
or by randomly orientated inclusions of various shapes (Wal
pole 1969), and for multiphase aggregates with fibrous and 
penny-shaped (platelet) inclusions (Laws, 1974). Other such 
estimates were found by Christensen and Waals (1972), Boucher 
(1974), Berryman (1980), Cleary, Chen, and Lee (1980), and 
Willis (1981). The conditions which guarantee that the self-
consistent estimates lie within the bounds were established by 
Hill (1965b) and Walpole (1969, 1981). 

In its recent reformulation by Benveniste (1987), the Mori-
Tanaka (1973) method offers another alternative to finding 
estimates of elastic moduli and local fields in composite ma
terials. Recent applications include the work of Weng (1984) 
who found the effective bulk and shear moduli of two and 
three-phase composites with spherical isotropic inclusions in 
an isotropic matrix. Benveniste, Dvorak, and Chen (1989) ap
plied this method to coated fiber composites. Zhao, Tandon, 
and Weng (1989) derived the effective moduli for a class of 
porous materials with various distributions. Norris (1989) ex
amined many aspects of the method and its relation to the 
Hashin-Shtrikman bounds. 

The present paper is concerned with evaluation of estimates 
of overall elastic moduli of certain composite materials by the 
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Mori-Tanaka method. In particular, we consider multiphase 
composites reinforced either by aligned fibers or platelets, and 
similar systems with randomly oriented reinforcement. In either 
case, the reinforcement may be isotropic or transversely iso
tropic. Moreover, we examine fibrous composites reinforced 
by cylindrically orthotropic fibers. As Benveniste, Dvorak, and 
Chen (1991a) have shown, both the Mori-Tanaka and the self-
consistent methods deliver diagonally symmetric estimates of 
overall stiffness in the selected systems. However, such sym
metry does not obtain in estimates of overall stiffness for 
multiphase systems with inclusions of different shapes or ori
entation. 

We start with a summary of most of the present results. This 
is followed by an outline of the method and its application to 
the selected systems. For the most part, the derivation is rel
atively straightforward. However, the cylindrically orthotropic 
fibers call for a special treatment. Some of the moduli are 
found by replacement of the actual fiber by an equivalent 
transversely isotropic fiber, but this approach does not extend 
to the shear modulus in the transverse plane. That particular 
result can be extracted only from a numerical evaluation of 
the overall stiffness tensor. 

2 Phase and Overall Properties 
Fibers and platelets used as composite reinforcements are 

often transversely isotropic. The same is true for composite 
aggregates reinforced by aligned fibers or platelets. If the axis 
of symmetry is chosen as parallel to the *raxis of a Cartesian 
coordinate system, then the elastic response of a transversely 
isotropic solid may be described in the form: 

(1) s 
a = k I 

I n 
e 
e 

7-23 = 2me23, Tn = 2pei2, rvh = 2pex 

where 

s = ~ (0-22 + 0-33), o = an, e = e22 + £33> e = eu, (2) 

and k, I, m, n, and p are Hill's elastic moduli (1964). In 
particular, k is the plane-strain bulk modulus for lateral dil-
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atation without longitudinal extension, n is the modulus for 
longitudinal uniaxial straining, / is the associated cross mod
ulus, m is the shear modulus in any transverse direction, and 
p is the shear modulus for longitudinal shearing. 

For an isotropic material, these moduli are related to the 
bulk and shear moduli K and G as: 

1 2 
•-K + -G, l = K--G, n--•K+-G,m=p = G. (3) 

In what follows, the above notation will be used both for 
the phase and overall moduli. The phase properties will have 
a subscript r = I, 2, ... N, while the overall quantities will 
appear without a subscript. 

Some fibers, particularly carbon fibers, are cylindrically or-
thotropic. Their elastic moduli in the tangential, radial, and 
axial directions are distinct. Nine stiffness coefficients describe 
this kind of anisotropy. In a cylindrical coordinate system, the 
stress-strain relation of a cylindrically orthotropic solid is usu
ally written as: 

<°rzs 

Crr 
C^r 

czr 
0 
0 
0 

Crj, 

0 
0 
0 

C$z 

c 
^zz 

0 
0 
0 

0 
0 
0 

Gr$ 
0 
0 

0 
0 
0 
0 

GZ<A 

0 

0 
0 
0 
0 
0 

Grz. <2tr. 

where z is the axis of rotational symmetry, and Cy, Gr$ 
and G„ are stiffness coefficients. 

(4) 

3 Summary of Present Results 

For convenience, we first summarize the main results for 
several systems of practical interest: composites reinforced 
by aligned, transversely isotropic fibers or platelets, systems 
with randomly oriented, transversely isotropic fiber or platelet 
reinforcement, and unidirectionally reinforced materials with 
cylindrically orthotropic fibers. Derivation of the results ap
pear in Sections 5, 6, and 7. 

3.1 Unidirectional Fibrous Composites. We consider a 
system reinforced by aligned, transversely isotropic fibers (r 
= 2, 3, ... N) in a transversely isotropic matrix (r = 1). Many 
different fiber materials may be admitted at the same time. 
The overall elastic moduli of such a fiber system are: 

N s CrPr 
N 

crmr 

Pl+Pr s 
r=l 

(5) 

rrir + yi 

CJr •sr-i (-rKr "<r-i M 

frikr + mi t i kr + 
/ - — 

f^.kr + mx £r(kr + mi 

(6) 

s kr + m\ 

\--i cr 

fr{kr+mx 

(7) 

We now list the results for two-phase systems of techno
logical interest; the subscripts/and m represent the fiber and 
matrix, respectively: 

P = 
2cfp„,pf+ c,„(pmpf+pm) 

2c/pm + cm 

mmmf(km + 2mm) + k,„mm(cfmf+ c,„mm) 

k,„mm + (km + 2mm) (cfm„, + cmmf) 

k _Cfkf(-k'"+ m'") + c'"k'" (kf+m>»} 
cf(k„, + m,„) + cm(kf+ m,„) 

(_Cflf{ km + mm) + c,„lm (kf+ mm) 
cf( km + m„,) + c,„ (kf+ m,„) 

n = c„,nm + cfnf+ (!-cflf- cml,„) lf-lm 
kf-k„ 

(8) 

(9) 

(10) 

(11) 

(12) 

It should be mentioned that the effective plane-strain bulk 
modulus k and cross modulus / in (10) and (11), predicted by 
the Mori-Tanaka method, coincide with those derived by Hill 
(1964, Eq. (3.6)) for the cylindrical composite element. In two-
phase fibrous media, the effective modulus n obeys the uni
versal connections, hence all the moduli k, I, n have the same 
values as those derived by Hill (1964). Therefore, for axisym-
metric loading situations, the Mori-Tanaka predictions coin
cide with those suggested by the composite cylinder model. 

Furthermore, Norris (1989) has shown that the Mori-Tanaka 
approximation for multiphase composites, where all particles 
have the same shape and alignment, satisfies the appropriate 
Hashin-Shtrikman or Hill-Hashin bounds. 

3.2 Unidirectional Platelet-Reinforced Composites. As 
above, we denote the matrix as r = 1, and the platelets as r 
= 2, 3, ...N. Transverse isotropy or isotropy via (3) is assumed 
in all phases, together with alignment of the phase symmetry 
axes with xx. The overall elastic moduli of such composite are 

N N N 

'=E CrPr m =s crmr, n -=s crnr 

I N I N I I 
—= y. cr , k— y crkr+—— y. cr 
n *—* n *•—' n *—* n nr nr 

(13) 

Surprisingly, the effective Mori-Tanaka moduli k, I, m, n, 
p of composites with aligned platelet reinforcement are iden
tical with those derived from the self-consistent model by Laws 
(1974, Eqs. (42)-(46)). Moreover, we note that they also co
incide with the effective moduli of a laminated plate (Postma, 
1955). 

3.3 Composites With Randomly Oriented Fibers or Plate
lets. We assume that both the matrix (r = 1) and the com
posite are isotropic and characterized by the bulk and shear 
moduli Ku K, and Gu G. The elastic moduli of the reinforcing 
phases r = 2, 3, ... N are defined in the local coordinates of 
each phase r, and in those coordinates each phase may be 
transversely isotropic or isotropic. The overall moduli of com
posites with such random reinforcements are 

K ^>nEc' (6,-3tf,a,.) 

c,+ 2] Wr 

" '—' r N 

where the parameters ar, ft., 5„ i)r depend on the moduli and 
geometry of the phases. 

For fibrous systems, these parameters are given as in terms 
of phase moduli of the phases as 
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«r = 3G, + 3A:A 

&r-

4G, + ( 2 ^ + / r ) | 4G, ^ ( 7 , + GQ 
3G, + 3/rr A-+G, 7i + mr 

(2jtr + /,)(3A'1 + 2Gi - / r ) 
/ j r + 2/r + 

3 ( / 7 r r j mr(3AT1 + 4G1) + G1(3^1 + 3w r+G1) 

(15) 

(16) 

(17) 

identical results found from the self-consistent method by Wal-
pole (1969, Eq. (60)). 

For randomly oriented, isotropic, penny-shaped inclusions, 
(201) reduces to 

3 ^ + 4 0 , 2 G , 19* r +8G f + 4G, 
"r 3Kr + 4Gr'

Pr 5Gr 5 3^ r +4G r
 l ^ 

and the overall bulk and shear moduli of two-phase media can 
be obtained as 

- l 

K=K2-ci(K2-Kl) l - c 2
: 3(^2 -Ki) 
3K2 + 4G2 

(28) 

8prGl 4krGx~4lrGx~ 2/f + 2kr/r 

pr+Gx 3kr+3Gx 

where in this case (isotropic matrix) 7) in (5) reduces to 

3GiA", + G\ 
7 I : 

3if,+7G, 

(18) 

(19) 

For penny-shaped, randomly oriented inclusions, the above 
parameters assume the values 

1 Kx 2nr~lr 

ar =— + x . Pr = r 
nr 3 nr 5 

lnr + 2lr + 4Gx 2Gi 

3«r p, 

nr 3 n. 

Vr 3 \ nrl 3 3 « r 
(20) 

If the fibers or penny-shaped inclusions are isotropic, then 
one can verify that 

5r=3Kran Vr = 2Grl3n (21) 

and for composites with reinforcements of these two kinds, 
the bulk and shear moduli in (14) can be simplified as 

N 

K=K{ + ^]cr{Kr-Kx) ~ 

r = 2 

G = G i + 2 > ' ( G ' - G i ) 
0, 

Cl + 2 CA 

(22) 

For such isotropic fibers or needle-shaped inclusions, (15) and 
(16) reduce to 

3ATi + 3G, + Gr 

Pr = -

r 3Kr+3G{ + Gr 

4G, + 3Kr 4Gi 2(7, + G_,)' 

3# r+3Gi + Gf G, + Gr 7i + Gr 

(23) 

(24) 

Therefore, for two-phase media with randomly oriented fi
brous reinforcements, the effective bulk modulus K and shear 
modulus G become 

3K2-3KX " I _ 1 

K=K2-cl(K2-Kl) 1-Ci 

G = G 2 - C , ( G 2 - G , ) 
1 

1 - -

3 ^ 2 + G2 + 3G, 

G2-G] 

(25) 

5 3 ^ 2 + 3Gi + G2 

2 G2 —G, 2 G2 —G, 
,£,2 7TT -7 c2 (26) 

5 G2 + 71 5 G2+G, 

Equations (25) and (26) can be compared with similar but not 

0 = 0 2 - 0 , ( 0 2 - 0 i 4 . G 2 ~ G 1 
5 C 2 3 i : 2 + 4G2 

2 G2-Gl 
7 C 2 — ^ 

(29) 

It is interesting to note that (28) and (29) are exactly the 
same expressions as those derived with the self-consistent 
method by Walpole (1969, Eq. (61)). 

Also, it should be mentioned that Benveniste (1987) has 
recently proved that the bulk and shear moduli predicted by 
the Mori-Tanaka method for a two-phase composite with ran
domly oriented ellipsoidal particles will lie within the Hashin-
Shtrikman bounds. 

3.4 Composites Reinforced by Cylindrically Orthotropic 
Fibers. The constitutive Eq. (4) suggests that cylindrically 
orthotropic fibers have constant moduli in the cylindrical co
ordinate system. However, most overall moduli must be eval
uated in a Cartesian system, where the fiber properties are no 
longer constant. The effective moduli of unidirectional com
posites of this kind are still those of a transversely isotropic 
solid, and can be obtained from the Mori-Tanaka procedure, 
but at least one of the overall moduli, the transverse shear 
modulus m, may not be found in closed form. Except for m, 
evaluation of the moduli is best accomplished by introduction 
of a replacement fiber which, under certain overall stress states 
has the same effective properties as the cylindrically ortho
tropic fiber described by (4). In particular, in their recent study 
of thermomechanical behavior of composite systems rein
forced by coated cylindrically orthotropic fibers, Chen, Dvo
rak, and Benveniste (1990) and Hashin (1990) observed that 
in axisymmetric loading situations the cylindrically orthotropic 
fiber can be replaced by an equivalent transversely isotropic 
fiber without changing the fields of outer phases and the overall 
behavior of the composite. Moreover, we show in Section 7 
that a replacement fiber with an effective modulus pf can also 
be found for the longitudinal shear loading case. No such 
replacement seems possible for transverse normal or shear 
loading. 

The effective moduli of the replacement fiber are recorded 
here as 

kf=(Crrr, + Cr4>)/2,lf 
Crzy + C0. 

ij + 1 •Pf = \JGA,zGr< 

(30) 

« / = - + [ ( C r z / / 1 + C^/ / , + C,z) 

2 Crzr) + Cfa 

1 + 77 C„t\ + Cr<jl 

(CrrHi + Crj,Hi + Crz) ], 

where the C,j were defined in (4), pj is derived in Section 7, 
and 

•n = {C^/crr)
l,Hx 

Crr— C&A 
(31) 
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These effective fiber moduli can be employed in (8), and 
(10) to (12), to find the corresponding overall moduli of the 
unidirectional composite reinforced by the cylindrically or-
thotropic fibers. The overall transverse shear modulus m must 
be extracted from the overall stiffness derived in Section 7. 

4 The Mori-Tanaka Method 
To introduce the derivation of the above results we sum

marize here the essence of this method, in the form which was 
recently suggested by Benveniste (1987). A representative vol
ume element V of the composite is chosen such that under 
homogeneous boundary conditions it represents the macro
scopic response of the composite. The volume is filled with a 
certain number of homogeneous phases which are perfectly 
bonded to a common matrix. The phase volume fractions cr 

satisfy E cr = 1; r = 1, 2, .. N. In the sequel, r = 1 denotes 
the matrix phase. The volume V is subjected to uniform dis
placement or traction boundary conditions 

u(5) = e°x, t(S) = a°n (32) 

where u and t denote the applied displacement and traction; 
«°, a0 are constant strain and stress tensors, and n is the outside 
normal to S. 

The objective is to evaluate the overall elastic stiffness L 
and its inverse, the compliance M, of the composite aggregate, 
defined by 

- T i 
ff = Lt , e 

= Mff°, (33) 

where <r and e denote the volume average stresses and strains 
in V. An intermediate step is evaluation of the elastic fields in 
the phases. Those are found in terms of phase volume averages 
(Hill 1963) 

e, = A / , ffr = B y , (34) 

where Ar and Br are referred to as mechanical concentration 
factors. Under the boundary conditions (32,) and (322), the 
local and overall field averages in V are respectively related 
by 

N N 
e°=Ec'e» f=Yic'a'- (35) 

Then, the overall elastic moduli L and compliance M follow 
as 

N N 

L=J]crLrAn M=J]crMrBr. (36) 
r = l r = l 

In the evaluation of the concentration factors by the Mori-
Tanaka method, each inclusion is regarded as a solitary in-
homogeneity embedded in an infinite matrix material under a 
remotely applied strain or stress equal to the matrix average 
t, or ffi. For ellipsoidal inclusions, the local fields in such 
solitary inhomogeneities are uniform, and can be evaluated in 
terms of partial concentration factors Tr, Wr: 

er = Tr«i, ffr = Wrff,. (37) 

Once the T rand W rare known, one can utilize (35) to establish 
that 

Y,CrTr t , ffl = J]crWr (38) 

and derive the mechanical concentration factors in (34) as 
- i r - i - i 

Ar = Tf E«tf, . Br = W, S c^ (39) 

The effective stiffness and compliance tensors L and M then 
follow from (36) and (39): 

L crLrTr LcrTr 

M E crMrWr Ec rW, (40) 

The partial concentration factors in (37) are conveniently 
expressed in the form 

Tr=[I + P ( L r - L , ) ] - 1 , W r = [ I + Q ( M r - M , ) ] - 1 (41) 

where the tensors of P and Q depend only on the shape of the 
inclusion, and on the elastic moduli of the surrounding matrix. 
For example, for an inclusion in the shape of a circular cylinder 
in a transversely isotropic matrix, the nonvanishing terms of 
P, written in a (6 x 6) array are (Walpole, 1969), 

Po7 = Pv 
8w,(£i + m,) 

Pn=Pn = -. 

2pi 
~ , Pa — '. 

8m,(&i + w,) 

k\ +2m, 
(42) 

2ml(kl + ml) 

in terms of the elastic moduli (1) or (3) of the matrix (/• = 1). 
Similarly, for a circular disk in a plane normal to the direction 
Of AT], 

Pu=-, P55 = P66 = - - (43) 
"l Pi 

Alternatively, (41) can be written in terms of the overall 
constraint tensors L*, M* (Hill, 1965b) which relate the uni
form fields in the inclusion r to the uniform applied fields <r° 
and e° as 

V = L 1 V - O , = M , ( f f ° - f f , ) . (44) 

Those are connected to the partial concentration factors by 

Tr=(L* +Lry\L* + Lt), \Vr=(M* + Mry\M* +M,). (45) 

The determination of L* and M* relies on solutions of 
boundary value problems for a uniformly stressed or strained 
cavity in the infinite matrix medium. For example, the non-
vanishing terms of the overall constraint compliance M* of a 
circular cylindrical cavity are (Walpole, 1969; Laws, 1974): 

(M,)22 = (M,)33 = - 1_ J_ 
mi k\ 

(M1)23 = (M1)3: 
1 

~2ki 

(M1)55 = (M,)fi6 = -
P\ 

* 1 2 
(M1)44 = — + — . 

mx kx 
(46) 

5 Composites Reinforced by Aligned Inclusions 

5.1 Aligned Fiber or Needle-Shaped Inclusions. We now 
proceed to derive the results which were summarized in Section 
3.1. First, consider a single fiber in an infinite matrix (r = 1) 
subjected to a longitudinal shear strain 2E] on its outside bound
ary. In this dilute configuration, 2e{ is equal to the average 
matrix strain, and the overall stress is a pure shear T\ = 2p^t\. 
This is an antiplane problem, hence the stress and strain in the 
fiber r have only the longitudinal shear components 77 = 2prtr. 
These local and overall quantities are related, according to 
(44,) and (463), as 

Tr-Tl = 2pl(el-er). (47) 

From the phase constitutive relations and (47), one finds that 
7>/V, = 2pr/(pr+pl), and the average matrix longitudinal shear 
stress follows from (352) as 
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T l : So 
2pr 

Pr+P\ 
(48) 

where T is the overall longitudinal shear stress that is actually 
applied to the composite. The average phase strains in (350 
can be written here as 

Finally, a substitution of. (47) and (48) in (49) leads to the 
expression for the effective longitudinal shear modulus p in 
(5,)-

A similar procedure can be extended to the transverse shear 
loading case. The constraint tensor in (464), (440 reduces to 
7! = (1/mi + 2/ki)~[, hence rr - T\ = 2 •y1(e) - er), where 
7> and er represent the corresponding transverse shear stress 
and shear strain in the phase r, respectively. As in the derivation 
of the longitudinal shear loading case, the average stress in the 
matrix is 

- l 

T\~- So mi(mr + y,) 
(50) 

and the effective transverse shear modulus m can then be 
derived in the form given by (52). 

Next, a pure lateral dilatation is applied without longitudinal 
straining; i.e., e° ^ 0, e° = 0 in (1). The local stress and strain 
relation is thus reduced to sr = k^r, and from (46,) and (462) 
the corresponding equation for the constraint modulus is (sr 

- Si) ~ m\(e\ - er). This and (352) imply that 
- l 

N sr ^kr(kx + mx) 

sx ki(kr + irii) 
S[ = s*i MATI + /« I ) 

(kr+m{) 
(51) 

Then, the effective plane-strain bulk modulus k given by (60 
can be derived from (35,). 

In the same loading situation as above, e° = 0 suggests that 

5 =ke°,a = le°. (52) 

From (352) and (52), one can write the average longitudinal 
stress as 

J*. /. / „ 
(53) 

/r_. K 
= 1 

kr 

Then, (51), and (6{) lead to the expression for the effective 
cross modulus / in (62). 

For evaluation of the modulus n, consider overall uniaxial 
straining without lateral contraction, i.e., e° # 0, e° = 0 in 
(1). The phase averages in the transverse plane and in the 
longitudinal direction are 

Y.c,er = 0, Lcjr = te°, T.cror = ne°, er = e°, r = 1,2.. ,N. (54) 

Using (540, Eqs. (542) and (543) can be recast as: 

Y^cr(kr-k\)er = l~J]crlr 

2 > ( / f - / , ) e , = (n-YjCrnr )e°. (55) 

In two-phase media, n follows from (55) and from the uni
versal connections for two-phase fibrous media with trans
versely isotropic constituents (Hill 1964): 

/?-C!«i-c2n2 l\~h 

l-cili-c2l2 ki-ki 
(56) 

In multiphase systems, one additional condition is needed 
for evaluation of n, namely the magnitude of er/e°. In the 
Mori-Tanaka method, one can use (410 and (390, with the P 
tensor given in (42) to obtain the necessary components: 

N 1 

er_ li-lr 
e kr+mx 

kr+ rri\ ZJ 
CrUr-ll) 
kr + mx 

E cr 

(57) 

kr + m, 

Then, the effective modulus n in (7) for longitudinal uniaxial 
straining can be obtained from (552) and (57). 

5.2 Aligned Penny-Shaped Inclusions. Consider penny-
shaped or disk-shaped reinforcement with the normal to the 
plane face of the platelet in the x rdirection. Due to the simple 
form of the P tensor in (43), the partial strain concentration 
factor can be derived from (410. The nonvanishing compo
nents are: 

n, n, 
,rn=T\ h-lr 

(58) 

r r rr,r rj*r i rj*r rj*r ^ 1 
22 — ' 33 — 1 44 — x , 1 55 — 1 66 — 

Pr 

The effective moduli can be derived as in Section 5.1 or by 
applying (58) directly in (40). In either case, the results obtained 
appear in (13). 

6 Randomly Oriented Inclusions 
In this section, the matrix is assumed to be isotropic and 

the inclusions at most transversely isotropic in their respective 
local coordinate systems. The effective properties predicted by 
the Mori-Tanaka method follow from a modification of (400 
and have the form (Benveniste 1987), 

L = L i + S c ' - ^ L ' ' - L l ) T ' - } cATr (59) 

Curly brackets (A j denote the average of A over all possible 
orientations. Note that all such averaged quantities in (59) are 
isotropic fourth-order tensors, even though the underlying ten
sor quantities, such as Tr, need not be isotropic. Hill (1965c) 
and Walpole (1981) pointed out that any general isotropic 
tensor A is subject to the spectral decomposition 

A = a3 + bK (60) 

where a and b are certain scalars, and 

Jijki = r 5y5ki> Ryu = - (bufiji + &ifijk - ^ M M ) 
(61) 

JJ = J, KK = K, JK = KJ = 0. 

This invites the notation A = (a, b), A~' = (1/c, \/b) in lieu 
of that in (60). 

To evaluate the overall elastic moduli (59), we recall the 
following result of Kroner (1958). For any fourth-order tensor 
Ayki, the orientation averaged quantity (A) can be expressed 
as 

|A)=(a, P), l*rl=(K^\ (62) 

where the scalars a, /3 are given as 

a = - AiW, 0 = - AM - — AiW. (63) 

To apply this result to the Lr and Tr tensors we write 
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[T r | = ( « „ & ) , [LrTr}=(6„ri,) (64) 

and utilize it in (59) to arrive at the expressions for the effective 
bulk and shear moduli that appear in (14). 

Certain simplifications are possible for two-phase media 
with isotropic constituents, where one can rewrite (59) as 

L = L2 + c1(L1-L2)[c1I + c2(T2J]- (65) 

Since both phases are isotropic then the first orientation 
average term in (65) becomes 

{L, - L2) = {3Ki - 2K2, 2G[ - 2G2) (66) 

where Ku G, are matrix moduli. 

7 Cylindrically Orthotopic Fibers 

7.1 Replacement Fiber. With reference to the discussion 
in Section 3.4, we present the derivation of the effective lon
gitudinal shear modulus p/ of a replacement fiber. Under re
motely applied stress a%, the admissible displacement field 
selected in the fiber, and the nonvanishing components of stress 
are (Chen, Dvorak, and Benveniste, 1990): 

u/
z = Afr9 sin<£, of

rz = GnA
fqi*-1 sin<£, a^G^A^'1 cos<£, 

(67) 

where q = \fG$z/Grz for the original fiber, and q = 1 for the 
transversely isotropic replacement fiber. To insure that the 
local field in the outer phase does not change after replacement 
of the fiber, the interfacial quantities, u{ and a{z, must both 
be identical in the replacement fiber and in the original, cy
lindrically orthotropic fiber. Evaluation of this requirement 
leads to the equivalent longitudinal shear modulus of trans
versely isotropic fiber in the form listed in (303). 

Moreover, the average stress af
yz must have the same mag

nitude in both fibers. Evaluation of this condition provides 
the following expression for the effective longitudinal shear 
modulus of the replacement fiber: 

Pf-
GrzQ + G 0Z 

q+\ 
(68) 

It can be shown that (3O3) and (68) are identical, hence either 
represents the unique longitudinal shear modulus of the re
placement fiber. 

7.2 Evaluation of the Overall Transverse Shear Modulus 
m. In a homogeneous elastic medium subjected to a uniform 
field of simple shear deformation in the transverse xy-plane, 
the displacement components are defined by: 

ux = cx, uy= -cy, uz = 0, (69) 

where c is a constant. In cylindrical coordinates this becomes 

ur = cr cos 20, u$ = -cr sin 2$, uz = 0. (70) 

In analogy with (70), we assume that the displacement field 
in a cylindrically orthotropic medium under transverse shear 
has the general form: 

ur=Ur{r) cos20, u$= t/0(/-)sin20, uz = 0, (71) 

where Ur{r), U^(r) are unknown functions of r, which need 
to be determined from the equations of equilibrium in cylin
drical coordinates. The requisite substitution provides the fol
lowing equations for evaluation of Ur(r), U^r): 

d2Ur Crr dUr 

" dr2 + r dr~ r2 Gr4, + j> C44, J Ur 

2(Cr^ + Gr,)dU, 2 
+ j ~5 (G r0 + C^) U$ - U (72) 

2(Gr0 + Cr4,) dUr 2(Gr0 + C^) 

dr r2 

Gr0 dU, 

Ur+Gr, 
d2UA 

dr2 

Gr<b + 4C„: 
l/* = 0. (73) 

r dr r1 

These can be solved analytically, the result is: 

Ur(r) = 2[(G* + C00) ~vi(Cr<t> + G^Ar"! + 2[(Gr0 + CH) 

+ rn(Cr4, + Gr<t>)]Br^ 

+ 2[(Gr0 + C^) - r,2(Cr4, + Gr4,)]Cr-n + 2[(Gr<p + Cu) 

+ m(Cr4, + Gr4,))Drr» (74) 

£/*(/•) = [Crrr,\ - (4G* + C^) ]Ar"i 

+ [CrrVj - (4Gr0 + C^) ]5r -" i + [Crd. - (4G,« + Cu)}Cr^ 

+ [CrrV\-{4Gr<l>+Cu))Dr' (75) 

where rj2 and rjl are the roots of 

CnGrtf] + [4Crr(t> + 2iCr4,Gr^ - 4CnC<t, Gr^(Crr+C^)]ri 

+ 9 G r 0 Q 0 = O, 

and A, B, C, and D are certain constants. 
In the Mori-Tanaka procedure, one must first solve an aux

iliary problem for a single fiber in an infinite matrix volume. 
The displacements (71), (74), and (75) are admitted in the fiber 
domain, while the displacements in the matrix are special forms 
of (74) and (75) for a transversely isotropic or isotropic me
dium . In any event, to assure boundedness of the displacements 
at the origin, the terms which contain the negative powers of 
r\x and rj2 must be excluded. The resulting admissible displace
ment field are best written in terms of the transverse normal 
stress a0 as 

u{=j~\2[(Gr4,+ C^)-m(Cr4,+ Gr4>)]a^^ 

+ 2[ (G r 0 + C 0 - r / 2 (C^ + G f 0 ) ] c , l -
12' 

cos20 (76) 

v/ = 

,/-

bl_ 
4GrA 

[Crrrji-(4G^ + C^)]al -

+ [C„.i»5-(4G„4+C0i)]c1 [ sm2<f> 

4mm u-
2 b fbV n 

^ r + (g,„+l)-a2+ {-) c2 

« < * = - • ( « » "'Mr-

cos2$ 

sin20 
3 1 

c2 (77) 
4m" 

«? = 0, 
where 

Hm = (2mm + k!")/k?\ 

and a" is the normal transverse stress applied at infinity. As 
yet unknown constants au a2, cit and c2 have been introduced 
to replace the A, B, C, D constants in (74) and (75). Since the 
matrix is regarded as transversely isotropic, we have used the 
connections between elastic constants to introduce the Hill's 
moduli k"1 and mm. 
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To complete the solution of the auxiliary problem, the four 
unknown constants must be evaluated from the usual con
tinuity requirements for the stresses arr, ar<t, and the displace- Lr = 
ments ur, u^ at the interface r = a. However, the resulting 
equations are coupled, and are best solved numerically. Once 
the constants are known, the phase stress fields under overall 
transverse shear loading can be derived from the displacement 
fields (76) to (77), and the appropriate constitutive relations 
(1) or (4). 

This completes the solution of the auxiliary problem, and 
opens the way to evaluation of the Mori-Tanaka estimate of 
the overall stiffness which contains the unknown transverse 
shear modulus m. Of course, the above solution delivers the 
auxiliary stress and strain fields in the phases in the cylindrical 
coordinate system, and both the fields and the phase moduli 
must be first transformed into the Cartesian system. As in 
Chen et al. (1990, Section 3), we denote the cylindrical system 
by the vector £, the fields themselves by primed letters a' (£) 
and i' (£), and the phase properties in the £ system by I / , 
M ' . Note that the factor 2 must appear in the shear terms of 
the 6 x 1 strain vector. In the Cartesian coordinates, these 
quantities are denoted by similar but unprimed letters. 

At any point in a given phase r, the transformation of the 
stress and strain fields between the current, cylindrical, and 
the Cartesian components is written as 

ffr(x) = Rffr(e), er(x) = S£r(£), (78) 

where, the transformation matrices R and S are related by R r 

= S_ 1 . Of course, in a transformation between the cylindrical 
and Cartesian systems, R and S are functions of the angle <j>. 
Next, write the phase constitutive relations, such as (4), in the 
symbolic form: 

o', «)=L; (sw «), £; «>=M; «>;«). (79) 

Equations (78) and (79) provide the relations 

<rr(x) = RLr' S " ' tr{\), tr{\) = SMr' R " ' ar(x) (80) 

at each point x. Note that S, R, Lr', M/ may now be functions 
of x, but for brevity in notation the argument will be omitted 
in the sequel. 

The local fields in (80) are related to the uniform, remotely 
applied fields e° and a" through certain influence functions 
Ar(x), Br(x); their volume averages, the mechanical concen
tration factors, appear in (34). Thus, under overall applied 
strain, (32,), the local strain field in (802) may be replaced by 
the term Ar(x) c°, and the result substituted into the formal 
phase constitutive relation ar = Lrer. When solved for r, the 
relation yields the result 

;l — \ RLrS^Ar(x)dVr (81) 

A similar operation on the local stress field in (800, but under 
boundary conditions (322), leads to 

r 
SMrR-%(x)dVr Mr = 

Vr 
B; (83) 

The above transformation relations are valid for any actual 
composite material or its model. Of course, in the Mori-Tanaka 
model one can employ the expressions (39) for Ar and Br to 
find 

-L [ RL;$~'Tr(x)cJVr 

M,.= - f SM,'R-'Wr(x)G?FA 
r JKP 

wr (83) 

Recall that the partial concentration factors and the under
lying influence, functions follow from the solution (77) of the 
auxiliary problem, and the transformation relations (78). When 
substituted into (83), they provide the necessary phase stiff
nesses and concentration factors for evaluation of the overall 
stiffness and compliance in (40). Of course, the procedure 
yields all components of L and M. However, the magnitudes 
of the moduli k, I, n, and p for the present system are already 
known from (30) and (8), (10), (11), and (12), and only the 
magnitude of m represents new information. 

We note in passing that in a transversely isotropic solid with 
the x raxis of symmetry, the Hill's elastic moduli and the stiff
ness coefficients are related as follows: 

L-n = k-m, LM = m, L55=L66=p. 

(84) 

8 Closure 
The formulation of the Mori-Tanaka method does not guar

antee diagonal symmetry of the estimated overall stiffness ten
sor. Indeed, it is easy to construct systems for which the 
predicted stiffness is not diagonally symmetric. However, Ben-
veniste, Dvorak, and Chen (1991a,b) prove that the Mori-
Tanaka estimates are symmetric in all two-phase systems of 
any geometry, and in those multiphase systems where all in
clusions have the same shape and orientation, or the P tensor. 
Such proof was also constructed for the unidirectional com
posite reinforced by coated, cylindrically orthotropic fibers. 
This suggests that the present estimates of overall stiffness for 
all systems with aligned fibers or inclusions are diagonally 
symmetric. An analogous conclusion for the randomly orien
tated reinforcement is indicated by (65). 

Both the Mori-Tanaka and the self-consistent methods pro
vide approximations which are admissible only if they are 
bracketed by available Hashin-Shtrikman bounds. For the 
Mori-Tanaka method, this question was recently explored by 
Norris (1989), who shows that the effective moduli estimated 
by the Mori-Tanaka approximation for two-phase composites 
always satisfy the Hashin-Shtrikman and Hill-Hashin bounds. 
However, this property does not generalize to general multi
phase composites. The status of the estimates for aligned plate
let reinforced systems, and for multiphase random 
reinforcement, remains to be established. 
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Interfacial Slippage of a 
Unidirectional Fiber Composite 
Under Longitudinal Shearing 
Interfacial slippage of a unidirectional fiber composite under longitudinal shearing 
is analyzed. The finite concentration of fibers has been taken into account by utilizing 
the composite cylinder model in the formulation of the problem. The resulting mixed 
boundary value problem leads to a system of dual series equations, which is then 
reduced to a Fredholm integral equation of the first kind with a logarithmic sin
gularity. The extent of slip region, which depends on the level of applied load along 
with the distribution of shear tractions at the fiber-matrix interface, is determined 
by solving the integral equation numerically. 

Introduction 
When a fiber composite material is subjected to longitudinal 

shearing, slip may occur at the fiber-matrix interface if the 
applied shear stress exceeds some critical value. In a recent 
paper, Steif and Dollar (1988) treated the problem of fiber-
matrix slippage for a dilute fiber composite. By considering a 
single fiber in an infinite matrix under a remote shear stress, 
they were able to solve for the extent of slip zone under a given 
load level of loading. The solution of a screw dislocation lo
cated at the interface of a single fiber and an infinite matrix 
was first obtained and then used to derive a singular integral 
equation governing the problem which has a Cauch-type ker
nel. 

The volume content of fibers is an important parameter in 
determining properties of a fiber-reinforced composite mate
rial and significantly affects its overall strength. Therefore it 
is of particular interest to include the influence of fiber volume 
fraction in the analysis of initiation and progression of slippage 
at the fiber-matrix interface. The purpose of the present in
vestigation is to study such effect when the applied loading is 
longitudinal shearing. 

The composite cylinder model for unidirectional fiber com
posites is employed in order to take into account the fiber 
volume fraction in the formulation of the problem. This model 
was first introduced by Hashin and Rosen (1964) and has been 
used in contexts that differ from the present one (Smith and 
Spencer, 1970; Zweben and Rosen, 1970; Budiansky and 
Hutchinson, 1986). The resulting mixed boundary value prob
lem for the fiber-matrix interfacial slippage leads to a system 
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of dual series equations. The dual series equations can be 
reduced to a Fredholm integral equation of the first kind with 
a logarithmically singular kernel, with the unknown function 
being the distribution of shear traction along the portion of 
the interface that remains intact. Although great difficulty is 
generally to be expected in numerically solving Fredholm equa
tions of the first kind with a smooth kernel, the presence of 
the logarithmic singularity makes the integral equation ame
nable to numerical solution. The extent of slip region as a 
function of the level of applied load is then determined by 
imposing the condition that throughout the entire fiber-matrix 
interface the shear stress should not exceed the critical value. 

Problems related to fiber-reinforced composites under lon
gitudinal shearing have been studied by a number of authors 
(for example, Smith, 1969; Budiansky and Carrier, 1984). 
Problems on fiber-matrix interfacial slippage have also been 
studied previously (Budianksy and Hutchinson, 1986; Piggott, 
1987; Steif and Dollar, 1988). The dual series approach (Sned
don, 1966; Erdogan, 1978) adopted in this paper has been used 
by many authors in solving various mixed boundary value 
problems such as the separation of an inclusion from an infinite 
matrix (Noble and Hussain, 1966; Keer, Dundurs, and Kiat-
tikomol, 1973), and the bending of cracked plates (Keer and 
Sve, 1970). 

Formulation of the Problem 
Consider a unidirectional fiber composite subjected to a 

remote longitudinal shear stress T0 as illustrated in Fig. 1. Both 
the fibers and the matrix are taken to be homogeneous, iso
tropic and linearly elastic, with shear moduli of Gf and Gm, 
respectively. It is assumed that the interface between the fibers 
and the matrix can only support shear traction up to a max
imum value, say, T„ beyond which slip can occur along parts 
of the interface. As in Steif and Dollar (1988), we assume that 
the shear stress over the slipped portion of the interface is 
maintained at this maximum value. 

Utilizing the aforementioned composite cylinder model, we 
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Fig. 1 Longitudinal shearing of a unidirectional fiber composite 

ty 

Fig. 2 Coordinate system for the composite cylinder model 

can confine our analysis of the current problem to a repre
sentative volume element consisting of a circular cylinder of 
fiber material and a surrounding concentric cylindrical shell 
of matrix material with their axis in the fiber direction as shown 
in Fig. 2. The radius of the inner cylinder a is that of the fiber 
and the outer radius of the matrix shell b is chosen so that the 
volume fraction of the fiber in the composite cylinder is the 
same as the overall fiber volume fraction Vj- of the gross com
posite material, i.e., a2 / / / = Vf. 

The problem is that of the antiplane strain deformation. 
The only nonvanishing displacement is the longitudinal com
ponent ve, which can be represented by a harmonic function. 
The extent of the unslipped segments of the fiber-matrix in
terface is specified by the angle a shown in Fig. 3. The mag
nitude of a depends on the fiber-matrix shear modulus ratio 
G//G„„ fiber volume fraction Vf as well as the applied load 
To- It can be seen that by virtue of symmetry of the problem, 
there exist two slip zones, one defined by a < 6 < w - a and 
the other by it + a < 8 < lit - a. The traction must be 
continuous over the entire interface, while the displacement 
may be discontinuous across the slip region. 

The displacement function w(r,6) satisfies Laplace's equa
tion 

V w = 0 

with corresponding stress components given by 

, = G 
dw 

Tez- r dd 

(1) 

(2) 

where G denotes the shear modulus. 
The foregoing expressions are valid for both the fiber and 

the matrix, provided that the proper shear modulus is used. 
In order for one to be able to consider the composite cylinder 
shown in Fig. 2 as a representative volume element of the 
overall material under the remote longitudinal shear stress T0, 
the boundary condition on the external surface of the matrix 
shell becomes 

Fig. 3 The region of slippage at the fiber-matrix interface 

Trz = r0 sin 6, r=b, 0<6<2it. (3) 

The symmetries contained in the problem imply that the 
analysis can be limited, without loss of generality, to the first 
quadrant. The solutions to Laplace's Eq. (1) in the two regions 
of 0 < r < a and a < r < b, denoted by w and ve, respectively, 
can be represented by the following series: 

'= 2 A„r"smnd, 0<r<a, 0<t ; T T / 2 (4) 

B, 
w= ]>] lA„r" + -~jsinnfl, a<r<b, O<0<7r/2. (5) 

n=l,3,... V r I 

Using (2), the radial shear stress components can be ex
pressed as 

00 

Trz = Gf 2 ] nA„r"-[ sin «0, 0<r<a, 0<6»<TT/2 (6) 
n=l ,3 , . . . 

Tn = Gm V) n\A„r"~l - - ^ M s i n « 0 , 

a<r<b, O < 0 < T T / 2 . (7) 

Similar expressions may be written for the tangential shear 
stress components TSZ and T6Z. 

The solutions are required to satisfy the boundary conditions 
at r = a 

frz(a,e) = Trz(a,d)^Ts, 0<<?<a (8) 

Trz(a, 6) = Trz(a, 0) = TS, a<0<7r /2 (9) 

w(a,6)=w(a,0), O < 0 < a (10) 

and the boundary condition at r = b 

Trz(b, 9) = T0sind, O < 0 < T T / 2 . (11) 

The boundary conditions are mixed, and it can be easily 
shown that they lead to the following dual series equations: 

where 

Gj 2_j na" An sinn0 = Ts, a < 0 < i r / 2 
n = l , 3 , . . . 

CD 

YJ (1+&,)«" An sinnd = F(6), O < 0 < a 

Gm 

B X1 + V" 

F{6)=T^T~asm6. 

(12) 

(13) 

(14) 

(15) 

(16) 

It is noted that the angle a which specifies the unslipped portion 
of the fiber-matrix interface is unknown as a priori and is to 
be determined as a part of the solution of the foregoing dual 
series equations. Before discussing the method of solving the 
mixed boundary value problem now formulated via a system 
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of dual series relations, we first derive the load conditions for 
initiation of slippage at the interface. 

Obviously, the aforementioned critical stress level TS up to 
which the fiber-matrix interface can sustain shear traction with
out slip depends on the bond strength of the interface. It is 
conceivable that under sufficiently small load and proper fiber-
matrix interfacial strength, no slippage will occur. In this case, 
we have a = TT/2 and the boundary condition (9) no longer 
applies, thus the problem reduces to that of the perfect bond. 
The shear stress at the interface in this instance can be easily 
found to be 

T^> = w i J ^ ,„ / T°sine' O<0<^/2. (17) 
A + 1 + (A — V)Vj 

Clearly, the perfect bond solution is valid if and only if the 
following inequality is satisfied: 

2X 
T0smd<Ts, O<0<ir /2. 

X + 1 + ( A - I ) K / 

Hence, we obtain the nonslip condition 

2X 
TQ<TS. 

(18) 

(19) 

In other words, slip will occur for values of the remote lon
gitudinal shear load T0 that satisfy 

T0 \+\ + (K-\)Vf 
— > -. 
T5 2X 

(20) 

For the special case when Vj = 0, this condition reduces to 
the one given by Steif and Dollar (1988), i.e., a single fiber in 
an infinite matrix. 

Solution of the Dual Series Equations 
We now proceed to construct the solution for the mixed 

boundary value problem formulated through a pair of dual 
series equations given by (12) and (13), assuming that slip has 
occurred at the fiber-matrix interface, i.e., the value of T0/TS 

is greater than (1 + X + (X - 1) Vf)/2K. For this purpose, let H(d) 
denote the shear traction along the unslipped portion of the 
interface. From (6) and (9) we have 

0<6<a 
Gf f ] na"-'Ansmnd^H(d)' 

«=1,3,... 
a<d<w/2' 

The Fourier coefficients A„ are then given by 

_ 4 r 4 
A , = — — J T T T ^(<t>) s i n«<W + 2 „_! Tscosna (22) 

irGfia J0 vG/n a 

«=1,3 , . . . . 
Substituting (22) into the second of the dual series Eq. (13) 
and changing the order of integration and summation, we 
arrive at a Fredholm integral equation of the first kind 

where 

H(<j>)K(6, 4>)d<p=f(Q), 0<6<a (23) 

K{6,<t>)= V . ( 1 + / ? „ ) - s i n « 0 s i n « <j> (24) 

7rX -^-, 1 
f(S) = ——— Tosinfl-rs y. ( l+fr , ) -2 cos«o:sin«e. 

2 ( 1 " K ' > - £ . . . . . " (25). 

The kernel of the integral Eq. (23) contains a logarithmic 
singularity. To see this, let (24) be rewritten in the form 

K(6,tj>) = (l+\) Y, -sinnd 
*•—' n 

smnti 

oo , , „ 

+ 2X V ! -——, - sin«6sin«0. (26) 
*~i 1 - Vf n 

Since Vj < 1, the second series in (26) is always bounded 
while the first one can be summed exactly to yield 

2-j 
1 1 
- sin/7(?sm/7</> = - log 
n 4 

tan 
2 

1 
~4 

log 
e-4> 

tan 
2 

(27) 

Hence, the kernel function becomes unbounded at Q = 4>. 
Due to the .presence of the logarithmic singularity, for an 

arbitrary value of a, the solution of the integral Eq. (23) will 
exhibit a square-root singularity at 6 = a. Since no such sin
gularity may be allowed, and the shear stress throughout the 
entire interface is bounded by TS and must be less than TS over 
the unslipped region, the extent of slip as specified by the angle 
a is determined by imposing the following end condition 

H(a)=rs. (28) 

Note that the function f(d) on the right-hand side of (23) is 
not well behaved at 6 = a, since at this point its derivative 
becomes unbounded as can be verified without difficulty by 
differentiating the expression (25). Hence, in view of the results 
given in Tuck (1980), it appears that the integral Eq. (23), 
which possesses a logarithmically singular kernel, has a unique 
solution that satisfies the end condition (28). The numerical 
solution carried out confirms this conclusion. 

Numerical Solution and Results 
it is well known that in general a Fredholm integral equation 

of the first kind with a nonsingular kernel can be very difficult 
to solve numerically. Indeed, this fact might partly account 
for the past preference for reducing dual series equations to 
an integral equation of the second kind (Westmann and Yang, 
1967; Keer and Sve, 1970; Keer, Dundurs, and Kiattikomol, 
1973). However, the logarithmic singularity present in the cur
rent problem makes the integral Eq. (23) suitable for a nu
merical solution by an effective technique discussed in Jaswon 
and Symm (1977), and Tuck (1980), which approximates the 
unknown function as a piecewise-constant step function. 

Thus, by discretizing the integral Eq. (23), a system of si
multaneous linear algebraic equations is readily derived (see 
Appendix). In solving the integral Eq. (23) numerically, the 
value of a that satisfies the end condition (28) under a given 
level of load T0 has to be solved by an iterative procedure. The 
bisection method was found to be quite effective to this end. 
The infinite series involved in the numerical evaluations con
verge rather slowly and in order to accelerate the convergence 
an appropriate integral formula was found to replace these 
series. In subsequent computations, 40 simultaneous equations 
were found to be adequate for achieving sufficient accuracy. 

The calculations were carried out for two different fiber-
matrix shear modulus ratios of X = 5.0 and X = 0.2. The first 
one corresponds to the case when the material of fibers is 
stiffer than that of matrix and the second one corresponds to 
stiffer matrix material. 

In both cases, the extent of slip region at the fiber-matrix 
interface, defined by ces = TT/2-a, as a function of the non-
dimensionalized load level T0/TS was computed for various fiber 
volume fractions. For simplicity, the distribution of shear trac
tions along the interface was presented here only for the value 
of fiber volume fraction equal to 0.4. These results are plotted 
accordingly. The extent of slippage given in this paper for the 
special case of zero fiber volume fraction, i.e., V; = 0, agrees 
well with the results calculated by Steif and Dollar (1988). 

The results presented in Figs. 4 and 5 indicate that for finite 
concentration of fibers, that is, Vf ^ 0, composite materials 
with stiffer fibers behave rather differently from those with 
softer fibers. Clearly, this phenomenon will not be observed 
for the case when Vf = 0, since then the extent of slippage at 
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Fig. 4 Extent of slippage as a function of nondimensionalized load 
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Fig. 5 Extent of slippage as a function of nondimensionalized load 
level for X = 0.2 

the fiber-matrix interface only depends on a single parameter 
2\T0/(\+\)TS. 

Figure 4 indicates that f or X > 1, the level of loading required 
to initiate slip increases as fiber volume fraction increases, and 
up to a point, which is in fact very close to the complete 
debonding of the fiber-matrix interface, the extent of slip re
gion under the same applied stress level is always smaller for 
a composite having larger fiber volume fraction. The minimum 
stress needed to cause slippage at the interface varies with 
different values of fiber volume fraction, and the complete 
slippage takes place only as the applied shear stress goes to 
infinity. Similarly, observations can also be made regarding 
the case when X < 1 as shown in Fig. 5. By examining the 
results presented in Figs. 4 and 5, one can conclude that for 
composite materials with stiffer fibers, increase in fiber volume 
content tends to increase the resistance to interfacial slippage 
in longitudinal shear, while for composite materials having 
softer fibers, increasing fiber volume fraction, on the other 
hand, results in decreasing such resistance. 

For a typical case when X = 5.0, Vf = 0.4, and T0/TS = 
1.0, comparison of the distributions of shear traction T along 
the fiber-matrix interface for perfect bonding and slipping 
displays the nature of the redistribution of the interfacial shear 
tractions due to partial debonding (see Fig. 8). The same qual
itative trend of redistribution of r can also be seen for other 
values of X, Vf, and T0/TS. The results presented in Figs. 6 and 
7 show that as the slip zone progresses, the stress level T over 
the unslipped portion of the fiber-matrix interface intensifies 
and rapidly reaches the critical value TS. 
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Fig. 6 Distribution of shear traction along the fiber-matrix interface for 
X = 5.0 and V, = 0.4 
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Fig. 7 Distribution of shear traction along the fiber-matrix interface for 
X = 0.2 and V, = 0.4 
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Fig. 8 Comparison of shear tractions along the fiber-matrix interface 
with and without slip for the case X = 5.0, V, = 0.4 and T0/TS = 1.0 

Finally, it should be mentioned that by utilizing the com
posite cylinder model, the interaction between fibers has been 
taken into account only approximately. The accuracy of the 
results obtained by using the composite cylinder model is ex
pected to be quite satisfactory up to certain fiber volume frac
tions. At large fiber volume fractions, however, the results 
may not reflect the true behavior of the composite material 
under consideration. 
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A P P E N D I X 

A brief description of the numerical scheme for solving the 
integral Eq. (23) is given here. 

By dissecting the interval [0, a] into N subintervals [</>v-i, 
4>j\< J = I, 2, . . . N, we can write (23) in the form 

2 H{<t>)K(6, 4>)d<t>=f(Q) (Al ) 
;=i J*7-i 

where H((j>) = H(<JJ)/TS and f(6) = f{B)/rs. Note that no ap
proximation is involved ir^ this step. 

Then we approximate H(6) by a step function, i .e^ replace 
it within they'th subinterval [4>j-i, 0/] by a constant Hj, giving 

J]Hj\ K(e,<t>)d4>~J(d). (A2) 
>=i * V i 

If we now evaluate the integrals at the midpoint of each 
subinterval, we arrive at a set of linear equations 

where 

y=i 

*u = 

e 

Hj = 

ft 

1 

-•fi, i = 

K(B, 
- l 

=7(0,) 

(<t>i-i + 

= 1,2... 

(j>)d4> 

* * ) • 

N (A3) 

(A4)' 

(A5) 

(A6) 

For computat ional convenience we let the subintervals be of 
equal length so that 

(A7) 

i=l,2,...N y' = 0,1,2,...TV. 

The Kjj can be evaluated to yield 

Ku = (1 + X) 2 ] ~2 sinw0,-(cosH$/_) - cos«<fJ,) 

•2X £ V'} 
, , \-V"fn-

sin«0,(cos/i0y_! - cosn4>j) (A8) 

ij=l,2,...N 

The fi can be expressed as 

fr = ^ T % ^ - ( 1 + *) S ^ c o M o s i m r f , 

-2A S 
V"f 1 
- z - ^ — cos«cwin/W; (A9) , , \-V] n 

n= 1,3,... J 

i=\,2,...N. 

In both (A8) and (A9), the second infinite sums are fast con
vergent whereas the first series converge very slowly. However, 
by using the formula 

> . - cosnz= - - log 
TT n 2 

tan , 0<z<ir, (A10) 

the slowly convergent series can be calculated in the following 
manner: 

°° 1 
4 2 — sin«0,(cos«0 J„1-cosnt7i ;) 

log 
"/+*;-1 

. z 
tan -

2 

dz+ \ log 
' , - * ; - 1 

y , ~2 cosn<xsmndj= —- \ log 
. i i K 4 J „ _ o , 

t a n • 

tan 
n=l,3,. 

dz ( A l l ) 

dz (A 12) 

i,j=\,2,...N. 

Using (A7), one can show that the series in ( A l l ) are sym
metric with respect to / and j so that only the case when / > 
j needs to be considered in the computat ions . Since the inte
grand in ( A l l ) and (A 12) is not well behaved near z = 0 and 
z = TT, the integrals are evaluated via the following procedure: 
r*2 

log z 
tan -

2 
afe = z2Iog 

- • d o g 

tan z2 - Z i l o g • Z1 

tan — 
2 

Zi 
+ vrlog cos 

Zi 

+ - \ l 7 r - z / s i n 2 - ) t a n - dz. (A13) 

The resulting integral in (A13) can be calculated by any nu
merical method, for instance, Simpson's rule is found to be 
very effective. 

The system of Eqs. (A3) is then solved for H, by adjusting 
a so as to satisfy the end condition 

HN=\ (A14) 

providing the desired numerical solution to the present prob
lem. 
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Analysis of Thermal Conduction 
Effects on Thermoelastic 
Temperature Measurements for 
Composite Materials 
Measurement of the temperature changes which occur as a body undergoes a change 
in stress is becoming a widely used technique for the analysis of surface stress fields. 
In this paper, an investigation into the effects of thermal conduction on surface 
thermoelastic temperature changes for composite materials is reported. A mathe
matical model which shows the effects of thermal conduction is developed, and the 
results from this model are compared with experimental data. The mathematical 
model is then extended to solve for heat transfer between two thermally dissimilar 
materials. It is shown how this model can be used to account for the effects of a 
surface epoxy layer on the observed thermoelastic temperature changes. 

1 Introduction 
There are many examples in the literature of the application 

of thermoelastic temperature measurement to composite ma
terials; for example, see Kageyama et al. (1988), Heller et al. 
(1989), and Zhang and Sandor (1990). It was first reported in 
Dunn et al. (1989) that the quantitative determination of sur
face stresses from measured surface temperature changes can 
be extremely difficult for certain laminate configurations. It 
was shown how this difficulty arises due to the nonadiabatic 
effects which can be present due to the different thermoelastic 
heat generated in different plies of a composite material. The 
adiabatic thermoelastic equation describing the reversible 
change in temperature generated in a two-dimensional aniso
tropic material due to applied stresses in the elastic regime can 
be written as 

- pc ——• = a i A u j + «2Aff2 (1) 

in which p is the density, c is the specific heat, A 7" is the change 
in temperature, T is the absolute temperature, a is the coef
ficient of linear thermal expansion, A<j is the change in stress, 
and the subscripts 1 and 2 denote the longitudinal and trans
verse to fiber directions, respectively. The mechanics of com
posite materials show that the stresses in different plies may 
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vary greatly depending on the fiber orientations. As a con
sequence, the temperatures generated in each ply, as described 
by Eq. (1), will be very different. These temperature discon
tinuities give rise to very high temperature gradients leading 
to significant thermal conduction. This, coupled with the fact 
that the thickness of a typical ply in a graphite/epoxy laminate 
is from 120 x 10~6mtol50 x 10~6m, means that such thermal 
conduction can greatly affect the observed temperatures on 
the surface of the laminate. 

Experimental results presented here show how thermal con
duction can affect the observed surface temperature changes 
for a commonly used laminate configuration. A mathematical 
model is developed which describes this effect. An important 
feature of this model is that it has the capability to take into 
account the effects of the surface layer of epoxy which will 
exist on every composite material unless removed by abrading. 

2 Specimens and Equipment 
In this paper the results for two composite lay-ups will be 

presented; a [(±45 deg)]6]s graphite/epoxy and [(0 deg, ±45 
deg)4]j graphite/epoxy. The specimens were 30 mm wide and 
145 mm long with bonded aluminum end tabs. The graphite/ 
epoxy material used was AS4/3501-6. The loading was applied 
via bolts which passed through holes in the end tabs and com
posite material. These bolts were tightened, clamping bushes 
on either side of the end fittings such that the stress concen
tration effects of the holes were minimized. 

Loads were applied to the specimens with a 50kN MTS servo-
hydraulic testing machine. The temperature changes on the 
surface of the specimens were measured using the infrared 
detector of a SPATE 8000 system and the data from the in
frared detector and load cell of the MTS testing machine were 
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Fig. 1 Normalized amplitude of infrared detector response versus fre
quency of loading lor aluminium, [(±45 deg)6]s and [(0 deg, ±45 deg)4]s 

laminates with and without a surface layer of epoxy. (Note: the alu
minium, [(±45 deg)s]s and [(0 deg, ±45 deg),,),, specimen without surface 
epoxy are normalized against their respective amplitudes at 10 Hz. The 
amplitude of the [(0 deg, ±45 deg)a]s specimen with a surface layer of 
epoxy is normalized against the amplitude of the [(0 deg, ±45 deg).,Js 

specimen without a surface layer of epoxy at 10 Hz.) 
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Fig. 2 Phase difference between load input and infrared detector re
sponse versus frequency of loading for aluminium, [(±45 deg)6]5 and [(0 
deg, ±45 deg)4]s laminates with and without a surface layer of epoxy 

face epoxy layer on a [(0 deg, ± 45 deg)4]j specimen are then 
examined. 

analyzed using a Wavetek 804A Multi-Channel Signal Pro
cessor. 

3 Frequency Effects 

3.1 Experimental Evidence. The following experiments 
investigate the effects of loading frequency, while maintaining 
a constant load amplitude, on the amplitude and phase of the 
thermoelastic temperature response for [(± 45 deg^L and [(0 
deg, ±45 deg)4]j graphite/epoxy specimens. The [(0 deg, ±45 
deg)]4L specimen was tested in two configurations: /. in the as 
cured condition, and ii. with the surface epoxy abraded away. 
The results are compared with those for an aluminium spec
imen. 

The results for the magnitude of the detector response di
vided by the cyclic load amplitude and normalized by the 
response at 10 Hz for an aluminium alloy specimen, a [(±45 
deg)6L and a [(0 deg, ±45 deg)4]s specimen in conditions i. 
and ii. (as described above) are presented in Fig. 1. The cor
responding phase difference between the measured load and 
infrared responses at the loading frequency are shown in Fig. 
2. (Note: The polarity of the infrared detector is such that a 
reduction in temperature leads to an increase in output voltage 
and that the experimental data was corrected for system elec
tronic effects at low frequencies as in Wong (1990).) 

The results presented in Figs. 1 and 2 show that the alu
minium and [(± 45 deg)6]s specimens behave in a similar man
ner with loading frequency. The [(0 deg, ± 45 deg)]4s specimen, 
however, responds in a very different manner with adiabatic 
conditions apparently not being achieved at a frequency of 45 
Hz. (Note: Similar results were first presented in Dunn et al. 
(1989); it has since been found that the emissivity enhancing 
paint layer used for those results had a significant effect on 
the observed phase response for the [(0 deg, ±45 deg)4]s spec
imen. As a consequence, the tests were repeated without any 
paint on the specimen. Such a surface coating of paint is not 
required for composite materials because of their relatively ' 
high infrared emissivity of 0.92 (Griffs etal., 1981). The reason 
for the significant effect on the phase response for this spec
imen will become obvious in the section dealing with the math
ematical modeling of the surface epoxy layer on such 
specimens.) The following analysis examines the thermoelastic 
heat generated in a [(0 deg, ±45 deg)4]s specimen and shows 
why thermal conduction makes it behave differently from the 
aluminium and [(±45 deg)6]s specimens. The effects of a sur-

3.2 Analysis of the Thermoelastic Heat Generated in a Com
posite Material. To determine the heat generated in the com
posite material, it is necessary to investigate the contribution 
from each of the two constituents, the fibers and matrix ma
terial, for each ply. To do this, it is necessary to determine the 
stiffnesses and Poisson's ratios for the laminate as a whole 
such that the strains may be determined. Given these strains, 
the average stresses in the matrix material and the fibers in 
each ply may be approximated. Equation (1) may then be used 
to determine the heat generation in each material. Wong (1990) 
has shown that the heat transfer between fiber and matrix is 
very rapid. This means that, given the heat generated in each 
of the constituents, the only information required to determine 
the overall heat generated in the ply is the fiber/matrix volume 
ratio Vf/Vm and the respective densities and specific heats. 

Given an orthotropic material, the relationship between the 
stresses and strains with respect to the laminate orthotropic 
(x, y) axes, may be written as 

(2) 

In order to approximate the average stresses in the fibers, the 
strains with respect to the ply orthotropic (1, 2) axes must be 
determined. The relationship between the strains in the two 
axes systems is given as 

UEX 

— VXy/ tLx 

0 

- VyX/Ey 0 

1/Ey 0 

0 l/GXy_ 

u 
U 
U 

n m — rnn 

-2mn 2mn m2-n2 

(3) 

aw 
where m = cos 6 and n = sin 6 (6 is the angle between the 1, 
2-axes and the x, .y-axes). Given that the thermoelastic heat 
generation (Eq. (1)) is dependent only upon the principle 
stresses, an average of these stresses in the fibers may be ap
proximated using 

0"! 1 

a2) 1 - vnvi\ 

Ei vnEi 

vi\E\ E2 _ 
(4) 

and substituting in the fiber material properties. It is important 
to note here that these equations are not adequate to determine 
the maximum stresses or stress distribution which occur in 
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Table 1 Material properties for AS graphite fibers and high modulus 
matrix material (Chamis, 1984) 

Table 2 Laminate properties for [(0 deg, ±45 deg)4]s laminate 

fibre longitudinal modulus 
fibre transverse modulus 
fibre longitudinal Poisson's ratio 
fibre transverse Poisson's ratio 
fibre long, thermal exp. coeff. 
fibre trans, thermal exp. coeff. 
fibre density 
fibre specific heat 
matrix modulus 
matrix Poisson's ratio 
matrix thermal exp. coeff. 
matrix density 
matrix specific heat 

En 
Ef2 
"112 
" /21 

Q'/l 
a/2 

PI 
cf 
Em 
vm 

a m 

Pm 
cm 

214 GPa 
13.8 GPa 
0.20 
0.013 
-1.0X10-7K 
10 X 10- 6 /K 

. 1744 kg/m 3 

837 J/kgK 
5.2 GPa 
0.35 
72 x 10~7K 
1246 kg/m 3 

1047 J/kgK 

either the fiber or matrix materials. To do this, microme-
chanical effects must be investigated. Nevertheless, these equa
tions give an approximation to the average stresses in these 
materials. Equation (1), which is used to calculate the heat 
generated in the materials, is a linear equation, and the heat 
diffusion between fiber and matrix is very rapid; given this, 
such average stresses, rather than a micromechanical stress 
distribution, are all that is required for these purposes. 

The fiber stresses from Eq. (4) may be substituted into Eq. 
(1) to determine the thermoelastic heat generated in the fibers 
of a particular ply. The same process may be carried out to 
determine the thermoelastic heats that would be generated in 
the matrix material (Note: Because the matrix material is 
isotropic, and strains are assumed to be constant throughout 
the laminate, the heat generated in the matrix is the same 
throughout the laminate.) 

When investigating the thermoelastic heat generated in com
posite materials, other researchers have found significant ir
reversible heating due to viscoelastic effects (Bakis and 
Reifsnider, 1988). The material used here was tested for non-
linearities arising due to irreversible heating. Such effects were 
found to be significant only at much higher strain amplitudes 
than those applied here for the frequency range used in these 
tests. 

The mechanical and thermal properties of these materials 
used in this analysis are given in Table 1. 

The laminate properties for a [(0 deg, ±45 deg)4]s lay-up in 
terms of the orthotropic axes of the laminate are presented in 
Table 2. 

For a [(0 deg, ±45 deg)4L laminate with no shear stress 
applied, the laminate properties from Table 2 may be substi
tuted into Eq. (2) to give ex and ey in terms of ax and ay. For 
the case studied here in which the laminate is subjected to 
uniaxial loading in the x-direction, the parameters are deter
mined in terms of ex giving ey — These strains are 
then substituted into Eq. (3) to give the strains with respect to 
the ply axes in terms of ex. Given ei and e2, Eq. (3), with the 
material properties given in Table 1, may then be used to 
approximate the average stresses in the components of the 
composite material. Equation (1) may then be used to deter
mine the normalized thermoelastic change in temperature in 
terms of tx. 

Carrying out these substitutions give 

AT 

txT 

AT 

?XT 

0 deg fibers 

45 deg fibers 

AT 

txT 

-2 .8X10 5 

Pfcf 

-0 .08 x10 s 

PfCf 

1.8 xlO5 

(5) 

Pnfin 

A useful assumption is that the heat generated in the matrix 
and fiber materials rapidly diffuses to give the same temper-

longitudinal modulus 
transverse modulus 
longitudinal Poisson's ratio 
transverse Poisson's ratio 
fibre/matrix volume ratio 

Bx 
Ey 
vty 

VyX 

vf/vm 

57A GPa 
24.2 GPa 
0,68 
0.29 
0.6/0.4 

ature rise in both materials; this is shown in Wong (1990) to 
be a valid assumption for all but very high frequencies (> 
1000 Hz). Using this assumption, an equation describing the 
energy in each ply may be written as 

Pp[yCp\yATply= VfpfcfATf+ VmpmcmATm 

and using 

gives 

Pp\yCp\y= VfPfCf+ VmpmCm 

(6) 

0) 

AT, ply : (8) 
VjPSCjATj-{- VmpmcmATm 

The results given in Eq. (5) and the fiber/matrix volume 
ratio, Vj/Vm, may then be substituted into Eq. (8) to give the 
normalized adiabatic temperature generated in each ply. For 
a [(0 deg, ±45 deg)4]s laminate subjected to uniaxial load in 
the x-direction, the normalized thermoelastic temperature 
changes (AT/exT) generated in the plies is found to be -0.07 
for the 0 deg ply and 0.05 for the 45 deg ply. 

Additional work is in progress which involves a means of 
determining the ratios of the heating in the different plies of 
a composite material from experimental data. The results from 
this work show very good correlation between the ratios de
termined from the experimental data and those found using 
the previous analysis for both a [(0 deg, ±45 deg)4L laminate 
and a [(90 deg, ±45 deg)4]s laminate. 

An interesting aside to this analysis is to look at the heat 
generated in a unidirectional laminate loaded in the fiber di
rection. An experiment carried out by Wong (1990) found that 
the thermoelastic heat generated in a unidirectional laminate 
was such that it suggested that the ax of the laminate was 
positive whereas most published values of ax for such a lam
inate are negative. Carrying out an analysis of the expected 
thermoelastic heat generated in a unidirectional specimen fol
lowing the previous method and using a laminate longitudinal 
Poisson's ratio of 0.26 gives the normalized heat generated in 
the fibers as - 2 . 2 x 105/p/Cf and that in the matrix as 4.22 x 
105/p,„c,„. Using the same fiber matrix volume ratio as pre
viously, the total normalized temperature change in the lam
inate is 0.03. This positive result is in accord with the 
experimental results presented in Wong (1990). 

3.3 Mathematical Modeling of Frequency Effects. The fre
quency effects can be demonstrated by modeling the thermal 
conduction within the laminate. Wong (1990) has modeled the 
frequency effects for a similar laminate using a finite difference 
technique; an analytical solution for the same problem will be 
developed here. 

To examine the temperature distribution T(x, t) through the 
thickness of a laminate, the laminate will be modeled as an 
infinite slab allowing the use of the one-dimensional heat equa
tion. 

a2r , N dT 
K-^+w{x,t) = pc- (9) 

in which K is the thermal conductivity and w(x, t) is the time-
varying heat generated through the thickness. 

Using a Fourier cosine transformation, Luikov (1968) solves 
Eq. (9) for an infinite slab of thickness 2R with the initial 
temperature taken to be 

T(x, 0 )= / (x ) (10) 
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and the boundary condition is taken as 

dT(R, t) 
dx 

• + q(t)=0 (11) 

in which K is the thermal diffusivity (K = K/pc) and q(t) is 
the heat flux absorbed at the surface of the slab. The solution 
given by Luikov (1968) is 

T(x, 0 = | j f(x)dx + ̂  j q(T)dr 

+ — 
cp IT- (x, T) dxdr 

f\ OO 

+R% 
n= 1 

nirx 
cos —— exp 

2K 

„2 2A ffl 

A - «7TJC f ' 

J] ( - 1 ) " c o s — J ^(T)exp 

x) cos — - dx 

(t-T) dr 

2 ^ nwx r'C* 

o-'o 

Rl (t-T) cos —-— dxdr. 
R 

(12) 

To study the effects of thermoelastic heating on a composite 
material, the heat absorbed at the surface, q(f), can be set to 
zero defining the boundary condition given in Eq. (11) as an 
adiabatic boundary. This is shown by finite difference analysis 
in Wong (1990) to be an acceptable boundary condition. The 
initial temperature distribution, f(x) may also be set to zero. 
Equation (12) then reduces to 

'm-l 

x \ 2 (aj-aj+i) s i n XinT 

where y = Kti2iv2/R2 and 17 = 7/0). Observing the temperatures 
at the surface, (x = R), as f—•<», Eq. (16) becomes 

T{R, 0l,-oo = - s i n orf 2 Xj(aj-aj+l)[+a, 

1 
+ -

•K 

vn ( - 1)" sint^ + rjcos co? f"̂ ,1 ") 

d+i?') J = I 

(17) 

A check that can be carried out on this model is to investigate 
its behavior as co —00. As co —00, it would be expected that the 
surface temperature amplitude would be unaffected by con
duction giving T(R, f) I,_„„_„_„ to be a,„/2. As co —00, T/ —0, 
giving 

r m - i ~i 
2 Xj(aj-aJ+l)l+a„, ^/f,/)I,-a»,a,-<x. = - sinoC 

1 
+ — sinco? 

ir 
JJ ~T~ ) S (aj~aJ+i)smXjmr j 

n - « = 1 ^y'=l 

Given that (Gradshteyn and Ryzhik, 1980) 

2 J - T — Sin/VHT=—r- , 

it can be seen from Eq. (18) that 

7XR,0l,-o , = — smut, 

(18) 

(19) 

(20) 

7X*,0 ' flcp \ J 0 J 0 
w(x, r)dx dr 

• 2 S ' 
mrx w(x, ?)exp 

2 2 

Rl (t-T) cos - — dx dr (13) 

This model may then be used to solve for the temperature 
distribution in a laminated slab of m plies with cyclic heat 
generation throughout its thickness of the form 

fvx cos wt ifQ<x<x\R\ 

w(x, t) = 

V2 cos wt if xi R < x < X2 R't 

\.Vm COS alt if Xm-l R < X < R 

(14) 

where Vj is the maximum rate of heat generated per unit volume 
in the y'th ply. Vj may be written as 

1 
(15) 

where «,- is the peak-to-peak temperature generated within the 
y'th ply under adiabatic conditions. 

Substituting the input described by Eqs. (14) and (15) into 
Eq. (13) and carrying out the integrations yields 

' m - l A 

2 Xj{aj-Oj+i)\ +am 

1 
T(x, / ) = - s m u>t 

1 
+ -

•K 

•£-\ 1 nvx /sin iot + n cos wt~r\e y'\ 
% - n c o s ^ \ ^ ~ » ( 1 6 ) 

as is expected. 
This is the analytic solution to the problem solved in Wong 

(1990) by finite difference techniques. For the [(0 deg, ±45 
deg)4L laminate used here, the ply thicknesses were 140 x 10~6 

m. Using these ply thicknesses, heating in each ply as found 
in Section 3.2 and a thermal diffusivity of 7 x 10~7m2/s (Chen 
et al., 1985), Eq. (17) was solved and the results were plotted 
with the experimental data for the [(0 deg, ±45 deg)4]s spec
imen in Figs. 3 and 4. The results from Eq. (17) agree quite 
well with those found experimentally for the specimen with 
no surface layer of epoxy (although there is some divergence 
in the amplitude at higher frequencies). Similar agreement was 
found between the experimental results and numerical mod
eling presented in Wong (1990) where the surface layer of epoxy 
was removed prior to testing (Wong, 1991). As can be seen in 
Figs. 3 and 4, there is a significant difference between the case 
with the surface epoxy layer removed and that for the surface 
in the "as-cured" condition. An understanding of the effects 
of the surface epoxy layer is essential to the understanding of 
results for most composite specimens which will have such a 
layer of epoxy. It will also have the advantage of leading to a 
fuller understanding of the effects of the surface layer of paint 
which is commonly applied to metallic specimens to increase 
their infrared emissivity for the purposes of thermoelastic stress 
measurement. 

3.4 Effects of a Surface Layer of Epoxy. To include the 
effects of a surface epoxy layer on the observed temperature 
changes, a "composite" problem, in the heat conduction sense, 
must be solved. The reason for this is that the thermal dif
fusivity for the epoxy layer is significantly different from that 
for the rest of the laminate. This problem can be solved by 
looking at two simultaneous equations of the form of Eq. (12); 
one for the surface epoxy layer and another for the laminate. 
For these equations, the terms involving the heat flux, q(t), 
must be left in to allow for heat transfer between the two 
materials. The equations take the form 
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no surface epoxy 
a 

with surface epoxy 

eqn(17) 

eqn(34) 

10 15 20 25 30 35 40 45 
load frequency (Hz) 

Fig. 3 Normalized amplitude of infrared detector response versus fre
quency of loading for the [(0 deg, ±45 deg)4]s specimen with and without 
a surface layer of epoxy compared with the results from Eqs. (17) and 
(34). (Note: the experimental results are normalized against the am
plitude for the specimen without a surface layer of epoxy at 10 Hz; the 
analytic results are normalized against the amplitude of the surface 
temperature changes at 10 Hz from Eq. (17)) 

no surface epoxy 
a 

with surface epoxy 

eqn(17) 

eqn(34) 

0 5 10 15 20 25 30 35 40 45 
load frequency (Hz) 

Fig. 4 Phase difference between load input and infrared detector re
sponse versus frequency of loading for [(0 deg, ±45 deg)4]s laminates 
both with and without a surface layer of epoxy compared with the phase 
difference between the input and the surface temperature changes found 
from Eqs. (17) and (34) 

Tp(x,t) = q(T)dT+ w„(x,T)dxdT 
RpPp^-p \ J o J0Jo 

+ 2 | ] ( - l ) "cos^ L(T)exp 
« = 1 P J0 

- nwx (•'(•** 
+ 2 2 J C O S — - wp(x,t)exp 

„ = 1
 Kp J 0 J 0 

2 ? 
K„n! 7T 

n = 1 n = 1 J 

(26) 

K„n 7T 

Ri 
( f - T ) 

in which 

dr 
%P= 5 J X;(«/—«/+I) +am, 

m-i 

2 P " = 2 ("J ~~ aJ+i)sinxj"7r 

(27) 

(28) 

n-KX , , . 
cos — - dxdr ) (21) 

RP 

y = i 

and 

for the subs t ra tum of plies (subscript p), and 

Te(X,t)=—— ( 67(T)C?T+ We(x,T)dxdT 

n = l K p J 0 

+ 2 2> s i r 
,1=1 - " f 

r Kp«V 

Ri 
(t-T) dr 

we(x,t)exp 

bp=l/RpPpCp 

be=VRePece. (29) 

Equation (26) is a Volterra integral equation of the first kind 
with a difference kernel and is most easily solved by taking 
Laplace transforms and making use of the convolution theo
rem, giving 

2 

Ri 
(t-T) cos — dxdr ) (22) -7T / ^ — ' 

1 VPs tip 

l+Vp I s +co 5 + o ) 5 + 7 p 

for the surface epoxy layer (subscript e). 
The interface condi t ions applying to Eqs . (21) and (22) are 

Te{Re,t) = Tp(Rp,t) (23) 

and 

qj,t)=-qp(t). (24) 

The heating wp(x,t) is as given in Eq . (14). The heating for 
the surface epoxy layer is 

s *-* s + y e ^ ^-f s + 
n = 1 ,tf « = 1 

TPJ 
(30) 

in which s is the Laplace ope ra to r and Q,(s) is the Laplace 
t ransform of q(t). Given tha t the only interest here lies in the 
part icular solution and not in any transients that may occur , 
Eq . (30) may be condensed to give 

(^p-al 
QJLs)--

We(x,t)=~ OiPeCedeCOSGlt. 

10 + 
y , COS«7T ap„ 

(CO + 7]pS) 

(25) 

Subst i tut ing the interface condi t ions given in E q s . (23) a n d 
(24), the surface epoxy heat ing of Eq . (25) and the ply heating 
of Eq . (14) into (21) a n d (22) gives the integral equa t ion 

(31) 

Equation (31) may be inverted using the inversion theory for 
Laplace transformations 

smcof 

K S;cos^ 

£~ i /W)\ 

sina)f + T)/,coscoi'-T)/,e V ' T) 

(1+V> 

<Ksj) 

. ^ V f~i ^'(•s>) 
e'r (32) 

in which there are J roo t s , Sj, of \f/(s). T o solve for the steady-
state cyclic response , the only roo ts required are ±/'co. 
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modelled surface epoxy 

profile of surface epoxy 

100 150 

microns 

Fig. 5 Diagram showing a typical half-wavelength of the variation in 
cross-section of the profile of the surface layer of epoxy for a [(0 deg, 
±45 deg)4]s specimen (solid line) and the surface epoxy layer as used 
in the mathematical model (dashed line) 

The result of this inversion will be q(t) of the form 
9(/)l/-<» = f t s m a , ' + fccoso^. (33) 

Inverting the Laplace transform and looking at the tem
peratures of the surface layer of epoxy, Te(0,t), gives 

Te(0,t)\,_.„ = bJ— cosut + — sinwt + ~- smut I 
(j>) co 2be J 

C °° ( _ J)" 

Cfr f" ( ' + ve) 

+ fc(sinatf + ijecosw/)] | . (34) 

Using Eq. (31), the heat transfer across the interface of the 
two materials can now be determined, and given this, Eq. (34) 
gives the temperature changes which would be observed on the 
surface. 

Before these equations can be used, the nature of the surface 
epoxy layer must be determined. For the specimens used here, 
a relatively coarse fiberglass bleed cloth was used in the curing 
process. Examination of the surface epoxy layer under a mi
croscope shows that the cross-section of the surface epoxy is 
as shown in Fig. 5. This epoxy layer was modeled as shown 
by the dashed lines in Fig. 5 giving the observed flux as an 
average of the three layers, weighted with respect to their 
surface areas. Using this surface model, the model used for 
the substratum of plies in the previous section, the heat gen
erated in the epoxy as for the matrix in Section 3.2 and taking 
the thermal diffusivity for the epoxy to be l x l0~ 7 m 2 / s 
(Chamis, 1984), Eq. (34) gives results for the frequency var
iation of the surface temperature as shown in Figs. 3 and 4. 
As can be seen, these analytical results compare favorably with 
those found experimentally and certainly exhibit the correct 
trend in the differences shown between the case for no surface 
epoxy layer and that with the surface epoxy layer. 

4 Discussion 
Two analytic solutions for the temperature distributions 

through a laminate subjected to different amounts of ther-
moelastic heat generation throughout its thickness have been 
developed. The first case considered involved treating the ma
terial as being homogeneous. Similar analytic models have been 
developed by Belgen (1968) and McKelvie (1987) in order to 
investigate the nonadiabatic effects experienced by a metallic 
plate in bending. The solutions presented by these authors 
(based on a solution to the problem given in Carslaw and Jaeger 
(1959)) can be extended to the case for a composite material. 
The model presented here, however, is more general in that it 
allows heat transfer across the boundary thereby greatly fa

cilitating the extension of the model to a "composite" model 
in the heat transfer sense (i.e., modeling materials with dif
ferent thermal properties). 

The next model investigated the temperature distribution 
through the thickness of a laminate with a surface layer of 
epoxy. The model developed is general and can be used to 
solve for the temperature distribution through two materials 
irrespective of the thickness and thermal properties. The effects 
of paint coatings on plates in bending were investigated by 
Belgen (1968), McKelvie (1987), and Mackenzie (1989). These 
studies neglected the "thermal load" that the coating places 
on the substrate material but it was considered that this effect 
would be small for a thin paint layer generating small amounts 
of thermoelastic heat with respect to an aluminium substrate. 
For the case of the laminate studied here, with a surface layer 
of epoxy, the above assumption is not necessarily valid. This 
is because the thickness of the epoxy layer can be much thicker 
than that for an emissivity enhancing paint layer and the ther
moelastic heat generated in the epoxy layer is very significant 
with respect to that of the substratum of plies. The model 
presented here can be used to examine the effects of a surface 
layer of paint on a specimen and the effects due to imperfect 
thermal contact between the coating and substrate discussed 
in Mackenzie (1989) can be easily included. 

There appears to be quite good correlation between the ex
perimental results and those determined using the mathemat
ical models. It is thought that in the cases where there is some 
divergence between the experimental and analytical results, 
that this is primarily due to the inexact knowledge of the 
mechanical and thermal properties of the material used. 

5 Conclusion 

In this paper, the thermoelastic heat developed in each ply 
of a graphite/epoxy laminate has been analytically determined 
from the mechanical and thermal properties of the fiber and 
matrix materials. A mathematical model was then developed 
to show how thermal conduction affects the thermoelastically 
generated temperature distribution through the thickness of 
the laminate. A further mathematical model was then devel
oped to solve for the "composite" problem (in the heat con
duction sense) such that the effects of a surface layer of epoxy 
on the laminate could be investigated. The results of the two 
mathematical models were found to compare well with ex
perimental results for a [(0 deg, ±45 deg)4]s specimen, with 
and without a surface layer of epoxy. 
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Influence of Porosity on Plane 
Strain Tensile Crack-Tip Stress 
Fields in Elastic-Plastic Materials: 
Part I 
We perform an analytical first study of the influence of a uniform porosity distri
bution, for the entire range of porosity level, on the stress field near a plane strain 
tensile crack tip in ductile material. Such uniform porosity distributions (approx
imately) arise in incompletely sintered or previously deformed (e.g., during proc
essing) ductile metals and alloys. The elastic-plastic Gurson-Tvergaard constitutive 
formulation is employed. This model has a sound micromechanical basis, and has 
been shown to agree well with detailed numerical finite element solutions of, and 
with experiments on, voided materials. To facilitate closed-form analytical results 
to the extent possible, we treat nonhardening material with constant, uniform po
rosity. We show that the assumption of singular plastic strain in the limit as the 
crack tip is approached renders the governing equations statically determinate with 
two permissible types of near-tip angular sector: one with constant Cartesian com
ponents of stress ("constant stress"); and one with radial stress characteristics 
("generalized centered fan"). The former admits an exact asymptotic closed-form 
stress field representation, and although we prove the latter does not, we derive a 
highly accurate closed-form approximate representation. We show that complete 
near-tip solutions can be constructed from these two sector types for the entire range 
of porosity. These solutions are comprised of three asymptotic sector configura
tions: (i) "generalized Prandtlfield"for low porosities (0 < f < .02979), similar 
to the plane strain Prandtl field of fully dense materials, with a fully continuous 
stress field but sector extents that vary with porosity; (ii) "plane-stress-like field" 
for intermediate porosities (.02979 < f < .12029), resembling the plane stress 
solution for fully dense materials, with a ray of radial normal stress discontinuity 
but sector extents that vary with porosity; (Hi) two constant stress sectors for the 
remaining high porosity range, with a ray of radial normal stress discontinuity and 
fixed sector extents. Among several interesting features, the solutions show that 
increasing porosity causes significant modification of the angular variation of stress 
components, particularly for a range of angles ahead of the crack tip, while also 
causing a drastic reduction in maximum hydrostatic stress level. 

1 Introduction 
Several classes of ductile alloys exhibit porosity. Examples 

include alloys produced by powder metallurgical techniques, 
and other alloys in which prior deformation has caused void 
nucleation and growth by fracture of second-phase particles 
and/or by particle-matrix debonding. To achieve a funda
mental understanding of and accurate predictive capabilities 
for fracture in such materials, it is necessary to generalize the 
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near-crack-tip stress and deformation field solutions for fully 
dense materials, upon which current nonlinear fracture me
chanics is based, to encompass constitutive models that account 
for porosity. 

Continuum-mechanical constitutive models have been de
veloped that incorporate porosity, and hence relax the classical 
plasticity assumptions that yield is unaffected by hydrostatic 
stress and that plastic strain is incompressible. Perhaps the 
best known of such models that have a sound micromechanical 
basis is that of Gurson (1977). This model considers a char
acteristic volume element that is an aggregate of spherical or 
cylindrical voids in a ductile matrix, with the matrix material 
idealized as being rigid-plastic and obeying the Huber-Mises 
yield criterion. By employing averaging techniques similar to 
those of Bishop and Hill (1951), Gurson (1977) used approx
imate upper-bound solutions on the microlevel to derive a 
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macroscopic yield condition for porous material. This yield 
criterion was subsequently modified by Tvergaard (1981, 1982) 
by introducing additional constants, which were demonstrated 
to bring its predictions into much better agreement with two-
dimensional numerical finite element analyses of material con
taining periodic distributions of cylindrical or spherical voids. 
Recently, Horn and McMeeking (1989) have carried out three-
dimensional finite strain, finite element computations that 
model deformations of materials idealized as containing ini
tially spherical voids in periodic cubic arrays. They found that 
although it cannot precisely describe this material's behavior 
under all deformation conditions., the Gurson model with Tver
gaard's modifications does reasonably well overall. This model 
has also been shown by several researchers to agree well with 
experimental data from specimens of known porosity produced 
by powder metallurgy, as reviewed by Tvergaard (1990). 

Our objective in this paper is to employ this reasonably 
realistic Gurson-Tvergaard model of porous metals and alloys 
to explore the influence of the entire range of porosity level 
on plane strain tensile crack-tip fields. To facilitate closed-
form analytical solutions to the degree possible, and to permit 
visualization-assisting representations in terms of stress char
acteristics, we model the material as being ideally plastic, and 
we treat the porosity as being uniform. 

To our knowledge, previous studies of the effect of porosity 
on crack fields in ductile metals and alloys have been numerical 
finite element analyses. Of these, we mention the works of 
Aravas and McMeeking (1985), Aoki et al. (1987), Needleman 
and Tvergaard (1987), and Jagota et al. (1987). 

Recently, Pan and co-workers (Li and Pan (1990), Dong 
and Pan (1991)) have analyzed near-tip crack fields in elastic-
plastic materials in which the effects of porosity are modeled 
by a simple Drucker-Prager type yield condition (which consists 
of a linear combination of the effective stress and the hydro
static stress) and an associated flow rule. They obtained closed-
form asymptotic stress fields for perfectly plastic material, 
while for power-law hardening materials the angular-de
pendent functions in the asymptotic stress and strain solutions 
are not closed-form. They employed this constitutive model 
to characterize polymers and ceramics, as opposed to metals 
as considered here; comparisons between our results reveal 
similarities as well as significant differences, as will be dis
cussed. 

2 Governing Equations 

We employ a small-displacement-gradient formulation to 
analyze a plane strain Mode I stationary crack in macroscop-
ically homogeneous, isotropic, elastic-ideally plastic, spheri
cally voided Gurson-Tvergaard material. Crack surfaces are 
taken to be traction-free. 

With reference to Fig. 1, let Cartesian axes X\, x2, and x3 be 
chosen so that x3 and X\ are parallel to the (straight) crack 
front and the crack surfaces, respectively. Throughout the 
paper, components of tensors with respect to this Cartesian 
system will be denoted by Latin indices i, j , k, I with range 1, 
2, 3 or by Greek indices a, /3, y with range 1, 2 only; the 
summation convention for repeated subscripts applies to both 
types. Let r, 6 be polar coordinates in the xvx2 plane and 

centered at the crack tip with 6 = 0 coinciding with the positive 
Xi-axis. 

2.1 Equilibrium. Plane equilibrium when no body forces 
act requires the stress tensor to be symmetric, oap = oga, and 
to satisfy 

daa0/dxa = O (1) 

or in polar coordinates 

rdarr/dr + dar6/dd + a[r - aee = 0, rda^/dr + daeg/dd + 2are = 0. 

(2) 

2.2 Yield Condition and Stress-Strain Equations. 
Tvergaard's (1981, 1982) modification of Gurson's (1977) 

yield condition is 

*(") = j SySij + lq J cosh 
Q2"kk 1 •q\f- 0, (3) 

where the void volume fraction/of the material is here assumed 
uniform everywhere and constant during deformation; s is the 
deviatoric stress tensor; and here and throughout the paper, 
stresses are nondimensionalized by the uniaxial yield strength 
or The parameters q^ and q2 are unity for the original Gurson 
model, but Tvergaard (1981, 1982) and Horn and McMeeking 
(1989) have shown that with qy = 1.5 and q2 = 1, the Gurson 
model agrees more closely with numerical analyses of periodic 
void arrays; and Tvergaard (1990) has reviewed comparisons 
of (3) with experiments on porous metals that show good 
agreement when q\ and q2 take these or similar values. Thus, 
q\ and q2 are positive and finite, and later in specific calcu
lations we take q2 = 1. 

We assume an additive decomposition of total strain incre
ments into elastic and plastic parts, and following Gurson 
(1977), that plastic strain increments can be derived from (3) 
via the associated flow rule, dey = d\d$(a)/doy; thus 

1 + v v 
dey = de%+d4 = -j?r dan~]p dokkOij 

+ d\ ]'iSij + qiq2fsi-rih 
QiOkk 

(4) 

Fig. 1 The Cartesian coordinate system, with x3 being directed out of 
the paper; polar coordinates r, 0 are centered at the crack tip 

where E* is Young's modulus nondimensionalized by ay, v is 
Poisson's ratio, by is the Kronecker delta, and dk > 0 is an 
undetermined parameter. 

2.3 Asymptotic Forms of the Governing Equations in 
Singular Plastic Sectors. The governing equations just sum
marized adopt simplified forms as r — 0 because of two as
sumptions we make: (i) that the material is nonhardening; 
(ii) that at least one component of the plastic strain increment 
tensor is singular as the crack tip is approached. The non-
hardening assumption, coupled with the yield condition (3), 
requires that all stress components be bounded. This is evident 
since the term ( - 1 - q\f ) is always negative and finite, and 
both 3/2SijSjj and 2^1/cosh[^2ff/t/t/2] are positive for a l l / > 0 
and hence (3) demands that each of these be finite. These latter 
restrictions show, respectively, that all deviatoric stresses s-y 
must be finite and that akk must be finite for nonzero / . There
fore, ay = sy + okkSij/?> must be finite for nonzero/. Stresses 
are also bounded near a traction-free crack tip f o r / = 0, as 
proved by Drugan (1985). 

Drugan (1985) also proved Rice's (1982) statement that 
boundedness of all components of the stress tensor requires 
rdoy/dr —• 0 as r — 0, so that the equilibrium equations (2) 
reduce to, for r -* 0: 

o-rr-ffW + (7rt = 0, (709 + 2(7^ = 0 (5a,b) 

or, in terms of Cartesian stress components 

an sin5 = o-12 cos#, a22 cos0 = cr12 sinfl, (6) 
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where a' = lim da(r, 9)/dd (in particular, a'^ = lim darS/dd, 
r-0 r~0 

etc.). 
Stress boundedness requires that elastic strains be finite, as 

must the quantity [ 3^ + q^q2f sinh(q2(Tkk/2)6y] also. When 
these facts are coupled with our assumption that at least one 
in-plane component of plastic strain increment is singular for 
r — 0, it is clear from (4) that d\ —. + oo as r — 0. Applying 
this fact together with the plane strain requirement den = 0 
to (4), we obtain the following asymptotic (r — 0) restriction 
on stresses in singular plastic strain regions: 

3s33 + qxq2f sinh qi<Jkk 
= 0. (7) 

Therefore, the plane strain condition (7) and the yield condition 
(3) together with the two equilibrium equations (5a,b) or (6) 
render stresses statically determinate in singular plastic near-
tip angular sectors. 

Instead of using the yield condition in the form (3), a dif
ferential form proves more convenient for asymptotic analysis. 
Differentiating (3) with respect to 8, taking the limit as r — 0 
and simplifying via (6) and (7) results in 

\<Jrr + aeo\ 3srr + q,q2f sinh qi^kk 
= 0. (8) 

Thus, our asymptotic governing equation system is now (5a, 
b), (7) and (8) for the four stress components in singular 
plastically deforming near-tip sectors. 

3 Stress Distributions in Singular Plastic Near-Tip 
Sectors 

We shall now analyze the statically determinate asymptotic 
governing equation set for stresses in singular plastic sectors; 
since we derived this set from an incremental plasticity for
mulation, the results in this section are valid for both stationary 
and quasi-statically growing cracks. (Following Rice (1982), 
for quasi-statically growing cracks, where singular (in r) strain 
increments can integrate to finite strains, singular plastic sec
tors are defined as those in which de^/de^p — 0 as r — 0 for 
at least one a, j8 pair; this also leads to (7).) 

There are evidently two possible solutions to (8): 

arr + aee = 0 or 3srr + qxq2fsinh QlPkk = 0. (9a,b) 

3.1 Constant Stress Plastic Sector. It is easily shown (e.g., 
Rice, 1982) that (9a) with (6) require 

a! i = constant, a22 = constant, cr12 = constant. (10) 

To determine ai3, we differentiate (7) with respect to 8 and 
apply (10) to obtain 

ff33) 4 +qiqjf cosh qi^kk 
= 0 => <J33 = constant (11) 

since the braced term in (11) is positive for a n y / > 0. There
fore, in an angular sector where (9a) holds, all Cartesian com
ponents of stress are asymptotically constant; we term this a 
"constant stress" plastic sector. 

In such a constant stress sector, stress components can be 
represented in polar coordinates as 

arr = cx + c2 cos 20 + c4 sin 20, c733 = c3 (13a) 

(fee = C\-c2 cos 2d - c4 sin 26, a^ = - c2 sin 29 + c4 cos 2d 

(13d) 

where constants cu c2, c3, and c4 must satisfy the plane strain 
condition (7) and the yield condition (3) written in terms of 
the c„'s: 

C3-Ci+-qiq2fsmh\q2 c,+-
c3 = 0 (14a) 

3(c1
2 + c2

4) + (cl-c3)
2 + 2qlfcosh)q2 

, C3 

C> + 2 
- l - < ? 2 / 2 = 0. 

(14b) 

3.2 Generalized Centered Fan Plastic Sector. Equation 
(9b) when combined with (7) and (5a,b) can be manipulated 
to show that the governing equation system for this second 
sector type is 

oee.+ 1q\qif sinh y (3<% + < = 0 

Or0 = 0"33 = Or, 

(15a) 

(I5b,c,d) 

It is evident that the system (15) is solved by first solving the 
transcendental ordinary differential equation (15a) then di
rectly calculating the other stress components from the re
maining equations. 

To attempt an analytical solution of (15a), we make the 
change of variable 

ff0) = y(3ffM + i 
3g2 hkk 

' 2 V 3 
(16) 

thus, a(6) is simply a multiple of the hydrostatic stress. Com
bining (16) with (15a) permits determination of oM in terms 
of a: 

, = — [ff + 9lgr|/sinh(ff)]. 
iq2 

(17) 

Substituting this into (15a) gives the transformed equation 

a " [1 + qxq\f cosh(<r)] + [a'2 + 3]qxq
2
2f sinh(a) = 0, (18) 

which, when multiplied by da, rearranged and integrated be
comes 

ll+qiqlfcosh(&)]da 
±dd. (19) 

iC-3[\+qlq
2
2fcosh(a)]2}W2' 

Here, Cis an integration constant. Unfortunately, (19) appears 
to admit no closed-form integration for a n y / ^ 0. Thus, we 
must resort to numerical or approximate analytical solutions 
for the stresses in such a sector. We term this a "generalized 
centered fan" plastic sector since, as illustrated shortly, one 
family of characteristics consists of radial lines emanating from 
the crack tip; also, in the limit / —• 0, (9b) implies sn -~ 0, 
which defines a centered fan sector in fully dense material (see, 
e.g., Rice, 1982). 

After attempting several approximate solution schemes for 
(19), including a perturbation expansion in / and Picard's 
iterative method, we found that the approximate approach 
giving the best accuracy for the full range o f / a n d 6 appears 
to be a truncated series expansion in 8, with retention of up 
to cubic terms providing the best compromise between accuracy 
and simplicity: 

oW&Zo + tiiO-Oii + UO-Oit + Me-Otf (20) 

where d\ and 82 (8\ < 8 < 82) define the asymptotic boundary 
locations of a generalized centered fan sector. Observe that 
this approximate representation contains four undetermined 
constants for a given 8\. We have found that the closest agree
ment between this representation and accurate numerical so
lutions of (18) is obtained by enforcing continuity of hydrostatic 
stress (which is required, as proved in the Appendix) across 
both generalized centered fan boundaries, i.e., 

<K0D = f ff**0f), o(92) = ̂ OkM) (21) 

and continuity of are across the leading fan boundary, i.e., 

3q2°re(.8i) 
ff'(0i+) = l+qiq2fcosh[q2akk(8l ) /2] ' 

(22) 
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A fourth condition on the four unknowns in (20) is obtained 
by substituting (20) into (18) and requiring the O(l) term to 
vanish (i.e., requiring (18) to be exactly satisfied at 8 = 8{). 
Together, these four conditions require 

Zo = <l2(rkk(0\ )/2, £i = 

« 2 = -

«3 

3g 2 ^(9 i ) 

l + ? i d / c o s h ( £ 0 ) 

(gi + 3) g l d/s inh(g 0 ) 

2[l + ? 1 d/cosh(? 0 ) ] ' 

£2 (23) 
(fc-fli)1 • ( « 2 - W ^2 -

It is easily shown that the approximate solution (20) with (23) 
reduces to the exact solution for fully dense material as / — 
0. 

Thus, our approximate analytical representations for stresses 
in a generalized centered fan sector are (17) and 

1 , 
••—•[2a-giqifsmH&)], 
3q2 

= ^33 = 

OrS = 
3ft 

[ l+ 9 ,d /"cosh(a)] (24) 

with a given by (20) with (23). As will be discussed, this ap
proximation shows excellent agreement with accurate numer
ical results. 

To obtain accurate numerical solutions for the stresses in a 
generalized centered fan plastic sector, we employ a fourth-
order Runge-Kutta integration scheme. This is accomplished 
by changing (15) to a first-order O.D.E. system: 

92 1 QiQif cosh Orr + ; - 2 

--Ore • 

tf^/cosh Qi\o, r + r (Jee + 1 

(ZSa,b,c) ari — aO0 ~ arn a60 — ~ 2orQ. 

Here, (25a) is obtained by applying (15d) to (9b), differen
tiating with respect to 8, then applying (5b); (25b,c) are rear
rangements of (5a,b), and CT33 is given by (15rf). 

4 Complete Near-Tip Stress Field for Low Porosities: 
Generalized Prandtl Field 

As just shown, constant stress and generalized centered fan 
plastic sectors are the only two possible types of stress distri
bution satisfying the asymptotic governing equations under 
the assumptions that for r -> 0, yield is attained and at least 
one component of plastic strain is singular. We now seek a 
complete near-tip stress field that satisfies these assumptions 
at all angles about the crack tip, while also satisfying the 
traction-free crack face boundary conditions, traction conti
nuity between sectors, and stress symmetry requirements along 
the 8 = 0 line. We observed earlier that a s / — 0, the governing 
equations reduce to those for a plane strain Mode I stationary 
crack in Huber-Mises material. It is well known that for a 
stationary crack in this latter material, the near-tip stress field 
is not unique, but the Prandtl stress distribution, illustrated 
in Figs. 2(a) and 3(a), is the only one possible if the stress 
component arr is assumed fully continuous, sn = 0, and the 
material is at yield for all angles 8 about the tip of a Mode I 
tensile crack. Although this Prandtl field applies for incom
pressible elastic-plastic materials, we expect a stress field quite 
similar to it for porous materials when porosity is small; in 
the present section we show this to be the case, calling the 
result the "generalized Prandtl field." 

Similar to the Prandtl field, the generalized Prandtl field 
consists of three sectors, as illustrated in Fig.2(b): a constant 
stress sector C adjacent to the crack surface; another constant 

(a) 

(b) 

(c) 

Fig. 2 The generalized Prandtl field solution configuration in terms of 
stress characteristics: (a) f = 0;(b)0 < f < 0.04468/(7,, and angles 0, 
and 02 vary with f;(c)f= 0.04468/g,, and 0, = 0, 02 = 133.9 deg 

stress sector A ahead of the crack tip; and a generalized cen
tered fan sector B joining sectors A and C. The border between 
sectors A and B is defined as 8it and that between sectors B 
and C as 82. 

4.1 Determination of Stresses in Constant Stress Sector C 
($2 < 0 < 7r). With reference to (136), the traction-free 
condition on 8 = ir requires 

ci = c2> c4 = 0. (26) 

Therefore, Ci and c3, and hence the stresses in Sector C, are 
completely determined by (14) for each fixed/. These equations 
are solved numerically. We make a change of variable by calling 
x = Ci + C3/2, which, via (14a) implies 

C\=% x+-qi(j2fsmh(q2x) 

c3- x-~qlq2fsinh(q2x) (27) 

Then, using (26) and (27), (14Z?) becomes 

- x2 + - xq{q2f sinh(q2x) +- q\q\f2 sinh2(<72*) 

-<7?/2 = 0. (28) + 2qxf cosh(#2*) - 1 

We have proved that (28) has two and only two equal and 
opposite roots for each 0 < / < \/q\. To obtain the Prandtl 
field in the / — 0 limit, the positive root, hence the positive 
c, and c3 values, are chosen; the alternate solution leads to 
am(r, 8 = 0) < 0 which is physically inappropriate since it 
does not correspond to tensile loading of the crack. 

4.2 Stresses in Generalized Centered Fan Sector B (6\ < 
d < 82). To calculate the stresses in the generalized centered 
fan sector numerically, the boundary values of aa& at 8 = 82, 
oa&(82), are necessary, as is the boundary location d2. We prove 
in the Appendix that all components of stress must be contin
uous across a boundary between a constant stress plastic sector 
and a generalized centered fan plastic sector. Thus, from (13) 
and (26), 
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Fig. 3 Polar components of stress as functions of angle 0 for selected 
values of /that span the range of applicability of the generalized Prandtl 
field 

e 

OrAh ) = c, (1 + cos202), ff,«(02) = - cx sin202 

^ ( ^ ) = c1(l-cos202) ) a33(02") = c3> (29) 

where C\ and c3 are given by (27) after solving (28). The bound
ary location 02 is determined by applying the generalized cen
tered fan condition (15c?) to (29) 

1 
= ir —- arccos 

2 
£3 

1 (30) 

which is so chosen that it becomes the same as that of the 
Prandtl field when the void volume fraction/ — 0. Thus, a^d) 
in the generalized centered fan are calculated numerically for 
a given / by first solving (28) and (27), then determining 02 

from (30), and finally applying (29) as boundary values to 
begin integrating (25). 

4.3 Stresses in Constant Stress Sector A (0 < 9 < &J. The 
Mode I stress symmetry condition requires on(Q = 0) = 0;' 
hence, via (10), 

o\iir,S) = Q throughout Sector A. (31) 

Again invoking the result proved in the Appendix, all stress 
components must be continuous across the border between 
Sectors B and A. Thus, (31) demands a^idt) = 0; application 
of this condition to the numerical integration of (25) in the 
generalized centered fan sector shows where that sector ends 

(i.e., determines Qx). The other (constant) Cartesian compo
nents of stress in Sector A are then immediately determined 
by enforcing full stress continuity across 6\. 

Enforcing the obvious restriction 0 < di < 62 s ir, the 
numerical analysis just described reveals that the generalized 
Prandtl field exists for all 

0</</ ,».04468/6/1 (= .02979 for qx = 1.5), (32) 

with / ] being the porosity / at which the generalized centered 
fan sector B extends to 8 = 0, and hence constant stress sector 
A vanishes. This limiting case is illustrated in Fig. 2(c). Table 
1 summarizes values for parameters of the generalized Prandtl 
field throughout its admissible / range, (32). In this table, c„ 
are the values of the parameters appearing in (13) for Sector 
C (recall (26)), while a„ are the values of those same parameters 
for Sector A (where a4 = 0 via (31)). Thus, (13) with these 
parameter values give analytical expressions for the stresses in 
Sectors C and A. We also provide values for £„, which facilitate 
approximate analytical representations of the generalized cen
tered fan stress components via (20) with (17) and (24); these 
are accurate to within a few percent throughout Sector B for 
the entire /-range (32), except that a^ is slightly less accurate 
(within ten percent) when b o t h / i s near/! and 0 is near d2. 

The near-tip stress distributions for three values o f / span
ning the range (32) are displayed in Fig. 3. Observe that in-
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creasing porosity causes significant modification of the 8-
variation of stress components, particularly for a range of 
angles ahead of the tip; it also causes a drastic reduction in 
maximum hydrostatic stress level. For example, maximum hy
drostatic stress decreases by about 21 percent when porosity 
increases from zero to about 3 percent (having taken qx = 
1.5)! 

4.4 Characteristics for the Generalized Prandtl Field. As 
noted above, the stress field associated with the generalized 
Prandtl field is entirely continuous and asymptotically satisfies 
equilibrium (1), the Gurson-Tvergaard yield criterion (3), and 
the plane strain restriction (7). We'apply Hill's (1950) approach 
to find the characteristic curves of this system. It is straight
forward to show that at any point on a characteristic curve, 
stresses must satisfy 

SStf + tfi^/sinh 
1 

= 0, (33) 

and dau/dn cannot be uniquely determined, where n and t 
denote, respectively, the directions along the outward normal 
and the tangent of the characteristic curve. Equations (33) and 
(7) together show that on a characteristic curve 

O33 = CJ„. (34) 

By applying this condition and the full stress continuity of the 
generalized Prandtl field, we have proved that for such an 
asymptotic stress field there exist two characteristic curves at 
every material point, and their slopes are continuous every-

H 9 3 

Acl 
/ D 7 ^ 

/ e 2 

< ^ l O ^ 
^ -

(a) 

03 = i 

(b) 

ft 

Elliptic 

(c) 
Fig. A (a) The plane-stress-like solution configuration in terms of stress 
characteristics, which applies for 0.04468/g, < / < 0.18043/g,, with fl2 

and 03 varying with f; (o) solution configuration for f = 0.18043/g,; (c) 
solution configuration for 0.18043/g, < / < 1/<j, 

where. It is these characteristic curves that we illustrate in Fig. 
2 (and will illustrate later in Fig. 4). In addition, similar to the 
results of Li and Pan (1990) for the Drucker-Prager model, 
for any 0 < / < / , the two families of characteristic curves 
are no longer orthogonal—their intersection angle increases 
from 7r/2 as / increases from 0; at the limit f — f\ the inter
section angle at 6 = 0 becomes IT. That is, the equations change 
type to parabolic on the crack line at this particular value of 
/ . However, the angular span of the generalized centered fan 
sector is greater than ir/2 for / > 0 and increases with increasing 
/ i n our solutions (see Table 1), while it remains 7r/2 for any 
pressure sensitivity in the Li and Pan (1990) solutions. 

5 Near-Tip Stress Fields for Intermediate 
Porosities: Plane-Stress-Like Distributions 

The preceding analysis shows that the generalized Prandtl 
field is the unique continuous near-tip stress field for plane 
strain Mode I Gurson-Tvergaard porous material under the 
assumption of singular plastic strain at all angles about the 
crack tip as r —• 0. The corresponding numerical calculations 
show that in the special case q2 = 1 (the value for q2 suggested 
by Tvergaard's (1981,1982) and Horn and McMeeking's (1989) 
numerical analyses), the generalized Prandtl field exists only 
for the/-range given in (32), with the generalized centered fan 
sector extending to the crack symmetry line (i.e., d\ = 0) a t / 
= fu while f o r / > f\,6\ < 0, which is physically inappropriate 
since it implies a violation of Mode I symmetry. However, an 
interesting fact is that the generalized Prandtl field for / = / 
(Fig. 2(c)) is reminiscent of the Hutchinson (1968) solution 
for the stress field near a plane stress Mode I stationary crack 
in (fully dense) Huber-Mises material, which consists of a 
centered fan sector beginning at 6 = 0 followed by two constant 
stress sectors with a stress jump across their mutual border. 
The difference is that the Hutchinson solution has one addi
tional constant stress sector. Thus, we attempted for / > / 
to find a solution configuration similar to that of Hutchinson 
(1968), as illustrated in Fig. 4(a). 

5.1 Stresses in Generalized Centered Fan Sector B (0 < 6 
< 82), To determine the stresses in Sector B of Fig. 4(a), we 
must first determine boundary conditions for all stress com
ponents at 0 = 0. Mode I symmetry requires 

ffrt)(0 = O) = O. (35a) 

In addition, stresses at 6 = 0 must satisfy the restrictions for 
a generalized centered fan sector (15e0, (96), and (3) (which 
together embody the plane strain, equilibrium, and yield con
ditions). Solving these subject to the tensile crack loading re
quirement ((%(0) > 0) gives 

<%(0) = Q + -\n)[(\ + qz
2)(q2-

i + q\r)V - f t ' + Q 

MQ1Q2J) 
<?2 

OM(0) = MO) = aM(0)-G. 

(35*) 

(35c) 

Table 1 Parameter values for the generalized Prandtl field ( O s f s 
0.04468/(7,) 

Q l / 

0.000000 

0.008937 

0.02682 

0.03575 

0.04468 

c l 

0.5774 

0.5702 

0.5560 

0.5491 

0.5422 

c3 

0.5774 

0.5659 

0.5436 

0.5328 

0.5222 

% 
45.0° 

41.1° 

32.4° 

26.1° 

0.00° 

»2 

135.0° 

134.8° 

134.4° 

134.1° 

133.9° 

a l 

2.391 

2.290 

2.124 

2.056 

2.016 

a 2 

-0.5774 

-0.4923 

-0.3537 

-0.2904 

-0.2066 

a 3 

2.391 

2.223 

1.974 

1.878 

1.809 

<k> 
3.587 

3.402 

3.111 

2.995 

2.920 

%1 

-1.732 

-1.289 

-.7381 

-.5064 

0.000 

& 
0.0000 

-.2752 

-.4088 

-.4273 

-.4378 

43 

0.0000 

.06769 

.05753 

.04409 

.02159 
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Table 2 Parameter values for the plane-stress-like field (0.04468/g, s 
t £ 0.18043/(7,) 

Ql/ 

.04468 

.06968 

.09468 

0.1197 

0.1447 

0.1697 

0,1804 

«1 

0.5422 

0.5232 

0.5047 

0.4867 

0.4690 

0.4517 

0.4444 

=3 

0.5222 

0.4936 

0.4665 

0.4407 

0.4162 

0.3928 

0.3831 

% 
133.9° 

62.4° 

45.4° 

33.5° 

23.3° 

11.7° 

0.00° 

°3 
133.9° 

101.3° 

95.7° 

92.8° 

91.0° 

90.1° 

90.0° 

dl 

.5433 

1.354 

1.319 

1.253 

1.183 

1.116 

1.088 

d2 

0.5421 

-.2435 

-.2938 

-.2763 

-.2443 

-.2121 

-.1990 

% 
0.5233 

1.231 

1.164 

1.078 

0.9953 

0.9193 

0.8888 

dj 

-.0001 

-.3191 

-.1614 

-.0073 

-.0026 

-.0003 

0.0 

<k> 
2.920 

2.477 

2.171 

1.938 

1.750 

1.592 

Si 
0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

fe 
-.4378 

-.4357 

-.4327 

-.4287 

-.4239 

-.4182 

% 
.02159 

.00695 

.00483 

.00367 

.00273 

.00149 

Table 3 Parameter values for the two constant stress sectors field 
(0.18043/g, < / < 1/q,) 

11 / 

0.18043 

0.25 

0.40 

0.55 

0.70 

0.80 

1.00 

c l 

0.444401 

0.398474 

0.306625 

0.222381 

0.143944 

0.09426576 

0.0 

c3 

0.383084 

0.324642 

0.220783 

0.140722 

0.0793210 

0.0470420 

0.0 

dl 

1.087837 

0.924238 

0.642506 

0.425368 

0.252823 

0.156806 

0.0 

d2 

-0.199034 

-0.127291 

-0.0292563 

0.01939447 

0.03506573 

0.03172561 

0.0 

d3 

0.888804 

0.716252 

0.446850 

0.264027 

0.106025 

0.07798514 

0.0 

where 

Q={l+2q2
2 + q2f2-2q2-

l[(l+q2
2)(q2~

2 + q2f2)]W2}[/2. 

(35d) 

With the boundary conditions given by (35), stresses can be 
calculated in the generalized centered fan by numerically in
tegrating the previously derived (25). 

5.2 Stresses in Constant Stress Sectors D (02 < 6 < 83) 
and C (03 < 6 < -IT). The general solution for stresses in a 
constant stress sector in polar components is as given previously 
by (13) and (14). Stresses in Sector C of Fig. 4(a) are exactly 
the same as those given in Section 4.1, and are thus known 
for any given/. Therefore, we have six unknown constants: 
cu ..., c4 of Sector D, which we shall call du • • •, dt,, and 02 

and 03; these can be determined by enforcing full stress con
tinuity across 0 = 92 (again, see the Appendix) and traction 
continuity across 0 = 03. The results are 

di = [aee(e2 ) + orr(d2 )l /2> d2 = ^i + (dx - c1)cos263 

di = <r„(0f ) , dA=(dx-c,)sin203; (36) 

c,sin202 + (di - cx )sin2(03 - 02) = orB(82), (37a) 

di - clCos202 - (dx - Ci )cos2(03 - 02) = aeem), 01b) 

where dt is a function of 02 only, as shown in (36); thus, (37a, 
b) can be used to determine both 02 and 03. 

Numerical calculations show that for q2 = 1 and each given 
/ i n the range 

0.04468/?, < / < / 2 = 0.18043/<71 ( = 0.12029 for <?, = 1.5), 

(38) 

there is a unique solution for 02 and 03 satisfying 0 < 02 < 03 

< 7r, and stresses are continuous across 0 = 02 while stresses' 
arr and CT33 jump across the 0 = 03 ray. Hence, this type of 
solution is very similar to the Hutchinson (1968) solution for 
a plane stress Mode I stationary crack in fully dense Huber-
Mises material, and we call it the "plane-stress-like" stress 
field. Values of parameters corresponding to this near-tip sec
tor assembly, i.e., to the range of / delimited by (38), are 
presented in Table 2. It is found that 02 — 03 = 133.9 deg as 
/ — / i = .04468/<7i; from this point of view, the generalized 

Prandtl field evolves directly into the plane-stress-like field. 
The numerical calculations also show that both 02 and 03 de
crease as/increases; specifically, a s / ^ 0.18043/?i, 02 — 0 
and 03 — 90 deg. That is, in this limit the generalized centered 
fan sector vanishes, and the resulting stress field consists of 
only two constant stress sectors with stress jumps across the 
ray0 = 03 = 90 deg. The corresponding field of characteristics 
for solutions in the range (38) is also established; as illustrated 
in Fig. 4(a) and noted previously, it is similar to that for a 
Mode I plane stress stationary crack in a Huber-Mises material. 
In each stress sector, the slopes of characteristics are contin
uous functions of stress components; therefore, they are con
tinuous everywhere except across the 6 = 03 ray, because a 
stress jump does exist there. In t h e / — 0.18043/<?i limit, Fig. 
4(b), the characteristic lines at each material point in Sector 
D coincide with one another and are parallel to the x raxis, 
indicating that the equations have become parabolic there. 
Figure 5(a, b) displays the near-tip angular variation of stress 
components for selected / values within the range of applic
ability (38) of this plane-stress-like construction. 

6 Near-Tip Stress Field at High Porosities: Two Con
stant Stress Sectors. 

We now investigate whether the near-tip configuration for 
/ = f2 can apply for larger void volume fractions also. That 
is, we assume that the stress field contains only two constant 
stress plastic sectors C and D, with initially unknown mutual 
border location 6 = 03. Thus, the stresses in Sector C are 
completely determined as in Section 4.1, and general repre
sentations of the stress components in Sector D are still given 
by (13) with (14), where again for Sector D we rename the 
constants c„ as d„ in these equations. The only unknowns are 
thus du d2, d3, and 0%, since Mode I symmetry requires d4 = 
0. 

Enforcing traction continuity across 0 = 03, we have 

-c?2sin203= -cisin.203 (39a) 

d,-d2cos203 = c,(l-cos203). 09b) 

Equation (39a) has solutions: 
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Fig. 5 Polar components of stress as functions of angle 0 for selected 
values of / in the plane-stress-like solution configuration [I = 0.08/g, 
and f = 0.15/q,] and in the two-constant-stress-sector solution config
uration [/ = 0.25/(7,] 

Okk(0) 

Fig. 6 Hydrostatic stress level (normalized by the matrix material's 
uniaxial yield stress) directly ahead of the crack tip versus Tvergaard-
adjusted void volume fraction. Transition porosity levels between the 
different near-tip solution configurations are indicated. 

C[ = d% or sin203 = 0 03 = O,-,7T (40a,b) 

Solution (40a) can be shown to have aee(6 = 0) = 0, which 
does not meet our requirement of tensile crack loading. For a 
similar reason, 03 = 0 and 83 = -it in (40ft), which give con
tinuous constant stress fields, are not appropriate either. 

Thus, 03 = 7r/2 is the only appropriate solution for / > 
0.18043/tfi. The constants d„ are determined by numerically 
solving (39ft) and (14) (in terms of d„'s) for each given / ; 
specific results are reported in Table 3. This stress field has 
jumps in arr and <r33 across the 0 - ir/2 line. Also, there are 
no real characteristics for stresses in Sector D: The equations 
have become elliptic there. This solution configuration is il
lustrated in Fig. 4(c), and a representative stress plot is given 
in Fig. 5(c). 

Finally, Figure 6 combines results from all three near-tip 
solution configurations obtained in this paper to show how 
the maximum hydrostatic stress level, which occurs directly 
ahead of the crack tip (r - 0, 0 = 0), decreases with increasing 
porosity for the entire porosity range. As noted earlier, the 
maximum hydrostatic stress level can be seen to decrease 
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strongly with increasingly porosity, especially at lower porosity 
levels. 

7 Discussion 
The results derived herein are expected to be physically 

meaningful in an annular region surrounding a crack tip, as 
is also true of previous "small strain" asymptotic solutions 
for crack-tip fields in fully dense materials (see, e.g., the lucid 
review paper of Hutchinson (1983)). The outer radius of this 
annular region is sufficiently small compared to, e.g., the max
imum plastic zone radius that the asymptotic forms employed 
here are valid, while its inner radius is on the order of two or 
three times the crack-tip opening displacement, since at dis
tances from the crack tip greater than this, the effects of large 
geometry changes and high void growth rates can be ignored. 
The large-deformation numerical finite element results of Aoki 
et al. (1987) and Jagota et al. (1987) support this conclusion. 

One of the simplifying assumptions made in the present 
analysis is that the material experiences plastic response at all 
angles about the crack tip. As demonstrated, solutions exhib
iting this feature do exist for the entire range of porosity. For 
/ > .04468/<7i (= .02979 for qx = 1.5), we showed these 
solutions to involve stress discontinuities. Although these are 
correct solutions, we are suspicious that another set of solutions 
may exist for this porosity range, possessing a sector of purely 
elastic response and exhibiting fully continuous stress fields. 
We are currently investigating this possibility. 
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A P P E N D I X 
Here we prove that all stresses must be continuous across 

the mutual border between a generalized centered fan plastic 
sector and a constant stress plastic sector located, respectively, 
on the " - " and " + " sides of the 6 = 0 ray, without loss. 
Traction continuity requires 

lfa»]] = 0, tto-rS]]=0 (Ala,b) 
where H07J = ov/e+) - 07,(8"), with ou(Q~) satisfying (9b), 
(I5d), and (3), while o-y(9+) satisfy (7) and (3). Applying these 
conditions to (Al), the resulting equations can be combined 
and rearranged to show 

G(«,y)=— H2 + - (q{q2f)
2 sinh\q2u) cosh2(^2t>) 

+ r qiQifu sinh(#2«) coshfe^) -4q1fsinh(q1u) sinh(q2v) 

+ 4qtq2fu &mh{q2(u + v)\ =0, (A2) 
where we have defined 

« - J [okk(Q~)-akk(Q
 +)], v = -A [akk(Q") + akk(Q

 +)]. (A3) 

For arbitrary v, it is easy to demonstrate via (A2) that G(u, 
v) has the properties 

G(0,i>)=0, — (w,y)<0(«<0), — (u,v)=0(u = 0), 

— («,i»)>0(«>0). (A4) 
du 

This shows that the only solution of (A2) is u = 0 (i.e., HO-JMJ] 
= 0), which together with (A3), (7) holding in both sectors, 
and (Ala) gives 

lOrr + O-33JJ = 0 , K20-33 - ff,,]] = 0 ( A 5 ) 

- ttff33D=0=HffrJ. (A6) 
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The Complementary Potentials of 
Elasticity, Extremal Properties, and 
Associated Functionals 

Introduction 
The powerful principles of virtual work and minimum po

tential were set forth in the 18th century. Brief historical ac
counts are given by Lanczos (1949) and Langhaar (1962). The 
former principle applies to any mechanical system; the latter 
applies to any conservative system. The complementary theo
rem of Castigliano (1879) applies only to infinitesimal dis
placements. Quite recently, a complementary theorem for finite 
deformations was given by Fraeijs de Veubeke (1972) and by 
Koiter (1973a). Other work on the complementary theorem 
and applications were presented by Zubov (1970), Koiter 
(1973b), Christoffersen (1973), Ogden (1975, 1977) and Nemat-
Nasser (1977). Earlier developments of "energetical princi
ples" are recounted by Oravas and McLean (1966). 

The complementary functional of Faeijs de Veubeke has an 
extremal property which admits a criterion for stability, akin 
to the criterion of Trefftz (1933). That criterion has been em
ployed by Popelar (1974) and by Masur and Popelar (1976) 
and presented in generality by Koiter (1976). 

In a previous article (1980), the author set the complementary 
principles in the context of a general functional which served 
to show the complementarity and the extremal properties of 
the potentials. The foregoing developments utilized the Jau-
mann (1918) components of stress and the rotation of the 
principal lines of strain. Indeed, dependence on the rotation 
is a feature of the complementary functional. Here the com
plementary functional is defined in a general form which bears 
a striking resemblance to the definition of the complementary-
energy density. The potential, the complementary functional, 
the related functionals of Hu-Washizu (1955) and Hellinger-
Reissner (1914, 1950) are all presented in terms of the alter
native measures of strain and stress: engineering strain with 
Jaumann stress and Cauchy-Green (1841) strain with Piola-
Kirchhoff-Trefftz (1833, 1852, 1933)1 stress. All are valid for 
finite deformations. 

The components, S'J in Eq. (7), are variously called the second Piola-Kirchhoff 
components and the Kirchhoff-Trefftz components. The work of Trefftz (1933) 
gives a graphic description. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
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Kinematics 
The notations follow the author's previous work (1980) in 

accordance with the notations of Green and Adkins (1960). 
Basic quantities follow: 

r, R = position vector of initial, current states, 
(undeformed, deformed) 

V = R - r 
6' = arbitrary coordinate (/= 1, 2, 3) 

g,-; G, = dr/dff; dR/W = r,,-; R , 
g'.gy. = G'Gj = 5j = Kronnecker delta 

gy. Gy = g;-g/, G j 'G ; 
Vg = gi«(g2><g3) = metric of initial volume 
euk = gi'(U,jxSk) = permutation tensor 

sh Sj = length along the 6' line in the initial, current state 
na. Na = unit vector tangent to the initial, current line of 

principal strain (a = 1,2,3) 
fya = A^'Na, cosine of the angle between an initial and 

rotated principal line 

Two measures of strain are useful. First, the component of 
the Cauchy-Green tensor is 

t u = \ (Gij-gtj). (1) 

Physical components (Green and Zerna, 1954) are 

7ij 

The underscoring of repeated indices negates the summation, 
otherwise implied by the convention. Stretching of a line is 
given by the ratio: 

dSj 

dSi 

Fraeijs de Veubeke (1972) employed components of engineer
ing strain such that principal lines (signified by Greek indices) 
experience extensional strains e„ = dS^/ds^ - 1 (a = 1,2, 
3). Then the tensor of engineering strain is given by the trans
formation to arbitrary coordinates (0'): 

ds„ ds. 

Vl+2e„. 

hn 
- dd1 dff "gy- (2) 

The engineering strain (/!</) was introduced by Alumae (1949), 
and again by Simmonds and Danielson (1970), both in non
linear theories of shells. 

A rigid rotation carries the unit vector ha (tangent to the 
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initial principal line) to the unit vector N a (tangent to the 
current principal line: 

N„ --/.anp. 
In the arbitrary system of coordinates (ff), the triad (g') is rigidly 
rotated to a similar triad 

g/ =rJ.igj [rJ.i = r 
dd^dSc, 

3s« dd1 (3) 

Note that only the principal lines are rotated to their final 
positions; the rotation of every other line differs by virtue of 
shear strain. The exception is simple dilatation, wherein every 
line experiences the same rotation. The current tangent vector 
(G,) results from the rigid rotation and subsequent "stretch": 

G,= W + &l)>*fgk. (4) 

It is noteworthy that 

hij = hJi = gi'Rj-gu (5) 

or, stated otherwise, 

8/ •R,y = g/,R,'--

Virtual Work of Stress 

The virtual work of stresses (per unit initial volume) is T1 • 
R,, wherein T is the stress vector upon the 8' surface; it is 
related to the physical stress s' (force per unit initial area): 

s' = T'/V^ (6) 
The stress may be referred to the triad g/or G,. The former 
rotates with the material, just as the principal lines of strain; 
the latter remains tangent to the converted line. Accordingly, 
the work during virtual displacement <5R has the alternative 
forms: 

T'.SR,•= Tu%- •5RJ = SUGJ'SRJ. (la) 

In accordance with (5) and (1), respectively, 

V-SRii = JuShu = Sudyij. (lb) 

The Jaumann components TiJ and the Kirchhoff-Trefftz com
ponents S'j are conjugate to the engineering strain hy and 
Cauchy-Green strain y-y, respectively. The former are referred 
to the triad g/, the latter to G,; in accordance with (7a): 

Tu = g'J>T', SV = GJ-T. 

Two subtle, but relevant, features are noteworthy. First, in 
view of the symmetry of both strains, only the symmetrical 
parts of the stress tensors play a role in the work (7). Secondly, 
the form T" = SiJGj expresses the stress in terms of the 
"stretched" vectors G,- and in (76) that "stretch" is incor
porated in the strain yy. Specifically, a variation of stress <5T' 
embodies a rotation of the reference triads (g,' or G,), but 
stretch of G, is incorporated in the variation of yy. Finally, 
physical components (force per unit initial area) of each stress 
follow: 

S'J-. 

It is noteworthy that the former contains only the initial metric 
(gj/) whereas the latter involves the deformed (GjJ). 

Internal Energy and Complementary Energy 
If the deformation is adiabatic, then the internal energy (per 

unit initial volume) of the elastic material has the alternative 
forms: 

W(h„) or W*(yy) 

In accordance with (lb), the symmetrical parts of the respective 
stresses are 

J*(U) _ (8a, b) 
dhy' dyy' 

In the usual manner, complementary energies, Wc and W'c, 
are defined by the Legendre transformation: 

W+Wc= TiJhy, W*+W*c= SiJyy (9a, b) 

Under the conditions for the inversion of (8a, b) in a neigh
borhood of the current state, the complementary functions, 
Wc and W*c are functions of the respective symmetric stresses 
and the strain-stress equations follow: 

dWc 
7y = dS <(/')• 

(10a, b) 

General Functional and Complementary Parts 
A primitive functional P was used previously (1978) by the 

author: 

P = \ [T'.R,,—f.R]rfu- \ [UR]da- \ [(R-R)-t]da. (11) 

Here, f denotes the body force (per unit initial volume), v the 
initial volume, t the surface traction (per unit initial area), a 
and a„ denote the entire surface and the part on which position 
is prescribed, R = R, the prescribed position. If the stress 
satisfies the conditions of equilibrium ((T'Vg),,- + -Jg f = 0 
in v, T'«, = t on a) and the displacement is compatible (R 
and R,- continuous in v, R = R on a), then P = 0. Stated 
otherwise, P is stationary among all statically and kinematically 
admissible variations of 1" and R, respectively. The last may 
be construed as a statement of the principles of "virtual force" 
and "virtual displacement." 

Now, the initial term on the right side of (11), and the 
equations (9a, b), provide alternative integrals: 

\V'Ridv= \ (W+Wc+T\)dv (12a) 

W*+W*c+
]-S\+]:Ti>Rj)dv. (12b) 

Substitution of (12a) or (12b) into the general functional (11) 
gives 

P = Pw + Pc = Pl + P* (13a, b) 

wherein Pw = P*w is the potential, expressed in terms_of al
ternative internal energies, W(hy) = W(yy); Pc and P* are 
the complementary functionals 

P c = ( (Wc+Tugy)dv- \ [UR]da 

- [t.(R-R)]cfa (14a) 

Pr = W*+|s j + ±T'.G,)rfi> 

- I [UR]da~\ [U(R-R)]da. (14b) 

Here, the potential of body forces and surface tractions are 
for dead loadings (constant loads). Again, the resemblance 
between (13) and (9) is striking. More important are the ex
tremal properties: If the body is in a state of stable equilib
rium, then (presumably) the potential (Pw and P*w) is a relative 
minimum. For all admissible (equilibrated) states P = 0 or, 
stated otherwise, the complementary functional is a relative 
maximum (APC =_ ~APW, AP£ = -AP^,). 

The functional Pc is that given in the earlier work (Wempner, 
1978). The functional (14b) deserves further exposition. Since 
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only equilibrated variations of stress are admissible, 5T'«; = 
5t on the surface av, St = 0 on a„ and (ST'Vg),,- = 0 in the 
interior, the application of the Gauss theorem gives 

d£F 1 1 
^ 5 S ; ; + i 5 S % - i 5 T ' . R , i 

rfy 

f [6t.(R-R)]dfl. 
J/7 

As noted before, the variation of stress implies a variation 
(rotation) of the basis (G,), so that 

51"' = 8SijGj + SU8Q X G, = 8S% + SiJ8QkekjsG
s 

Accordingly, the variation 8P* takes the form 

8PC = (~dS^ + 2 giJ~ 2 Gij) 5SiJ + SijekJi5Qk dv 

[8t'(R-K)]da 

The stationary conditions follow: 

1 dW* 
~ {Gjj — gij) — Qgj , Sij = SJi 

R = R (ona„). 

Functionals and Stationary Theorem of Hu-Washizu 
The functional and stationary theorem of Hu-Washizu is 

commonly expressed in terms of the strain and stress tensors, 
7,y and SiJ. Less common is the expression in terms of the 
tensors hjj and_ T'j. The functional is obtained by augmenting 
the potential Pw with the kinematical constraints, viz., 

Tu(hij-grR,i + gii)mv 

t - ( R - R ) on a„. 

The result follows: 

Hw= \ [Ww-tigij-T
i(hij-gj'Ri)- - I . 

- \ [UR]da- \ 

R)dV-

[U(R-R)]da (15) 

Now, H„ = Hw {hjj, r,j, T'J, R), a functional of strain, rotation 
(of g/), stress, and displacement. Continuity is the only con
dition for admissibility of the fields. 8HW = 0, if and only if 
all kinematical, statical, and constitutive conditions are sat
isfied. For arbitrary variation of the rotation (ry), one obtains 
the condition of vanishing moment 

Tu(hi+8k) = Tik(hii + 8j
i). (16) 

Functionals and Stationary Theorem of Hellinger-
Reissner 

The functional of Hellinger-Reissner has alternative forms, 
as a functional of stress and displacement, T" and R, or Su 

and R. These follow immediately from (14a) or (146). It is 
only necessary to apply the Gauss theorem to the first integral 
on surface a,;. 

\ [t.R]da=\ (T'Vi),, .R + T'.R,/ - I . dv- [UR]da. 

Here, the tractions are in equilibrium, t = T1 «,- on a, and the 
stress satisfies equilibrium, (T'Vg),,- = -Vgf in v. The func
tionals Pc and P* take the forms: 

Pc= \ [ W c - T ' . ( R , - g / ) + Mr]rfi> 

- f [t-R]da- \ 

Pr = Wc-lSf(Rj'Rj-gv)+t-R 

\ [t'R]da- \ 

[U(R-R)]da (17a) 

dv 

[t.(R-R)]efa (176) 

Now, one considers Pc (Tu, R) and P*(SU, R). The theorem 
asserts that the functionals are stationary with respect to ar
bitrary variations of the stress and displacement. The latter 
leads to the equilibrium condition (T'Vg),,- + Vg f = 0. One 
could accept a priori the condition hxi = hyi or, equivalently, 
g/ • Rj = gj •R/, otherwise, the variation 5g/ = 8Qx g/ leads 
to the equilibrium requirement (16). 

Conclusion 
The foregoing presentation of the functionals gives a defi

nition (13a, 6) of the complementary functionals, analogous 
to the complementary functions (9a, b). The sum in either 
case is the primitive functional P which vanishes for all equi
librium states. The extremal properties of the potential (form 
Pw or P„) and its complement (form Pc or P*) is established. 

Any of the functionals and the associated extremal, or sta
tionary, properties might be employed for the approximation 
of the deformed equilibrium states. Of course, the comple
mentary functionals admit only stresses which satisfy equilib
rium, a difficult prerequisite. The minimum potential requires 
only the requisite continuity of the displacement. The func
tional of Hu-Washizu is a modification of the potential which 
admits_approximation of strain and stress; moreover, the func
tion (Hw = Pw, or Hi, = P*w) is the potential, ;/ the strains 
are fully compatible with the displacement. Because the func
tionals of Hu-Washizu and Hellinger-Reissner admit also ap
proximations of strain and stress, they are useful tools in the 
formulation of finite elements. Specific advantages in the ap
proximation of shells are described in the author's review 
(1989). The forms given are all valid for finite deformations 
of any elastic body. 
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Equilibrium Configurations of 
Cantilever Beams Subjected to 
Inclined End Loads 
In this study, equilibrium configurations of a cantilever beam subjected to an end 
load with constant angle of inclination is investigated. It is shown analytically that 
if the beam is sufficiently flexible, there are multiple equilibrium solutions for a 
specific beam and loading condition. A method is also presented for the determi
nation of these deflected configurations. The cantilever beam studied in this research 
is considered to be initially straight and prismatic in addition to being homogeneous, 
elastic, and isotropic. The procedure outlined in this paper is utilized to show that 
for each combination of load and beam parameters, there are certain number of 
equilibrium configurations for a cantilever beam. The ranges of these combinations, 
along with some examples of the deflected shapes of the beams, are provided for 
several load inclination angles. 

Introduction 

The problem of large deflections of cantilever beams sub
jected to concentrated end loads has been investigated by many 
researchers. Deflection of a straight prismatic cantilever beam 
subjected to an end transverse load was discussed by Barten 
(1944, 1945). The same problem was investigated later by Bis-
shopp and Drucker (1945). Conway (1956) obtained the so
lution to the nonlinear bending of a circular cantilever beam 
subjected to an end transverse, and end axial load (loads not 
simultaneously applied). A numerical procedure was also pro
posed by Wang (1968) to obtain the deflection of a beam with 
a transverse concentrated end load. 

The problem of bending of a straight, or circular arc can
tilever beam under the simultaneous action of a transverse and 
axial end load was solved by Mitchell (1959). Also, two other 
approaches to the analysis of a cantilever beam subjected to 
an inclined end load were introduced by Frisch-Fay (1961). 

In all the studies mentioned above and other similar studies, 
only one equilibrium shape was obtained for a beam with a 
prescribed end loading. In the work presented by Love (1944), 
Timoshenko and Gere (1961), and Frisch-Fay (1962), several 
equilibrium configurations of a beam with end axial loads were 
shown, but it should be mentioned that these equilibrium con
figurations were not caused by the same value of the load. In 
a study done by Reid (1984), using a numerical procedure it 
was shown that alternate equilibrium positions are possible for 
a cantilever beam under the action of an end transverse load 
perpendicular to the undeformed axis of the beam. The nu-
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merical technique used in Reid's work has several shortcom
ings, i.e., it may not guarantee all possible solutions, or it may 
require tremendous computational effort. 

In the paper presented here, a comprehensive study is done 
on the deflected configurations of a cantilever beam subjected 
to a specified inclined end load, and a method is presented for 
the complete determination of all possible deflected shapes of 
the beam with minimum computational effort. It is through 
the application of the procedures outlined in this paper that 
the authors have established that for each particular combi
nation of load and beam parameters, there are certain number 
of equilibrium configurations for a cantilever beam. Deter
mination of the ranges of these combinations and the specific 
numbers of equilibrium configurations of the beams in each 
of these ranges are also demonstrated in this paper. It should 
be mentioned that no published study could be cited by the 
authors that show these results. 

The cantilever beam studied in this research is considered 
to be initially straight and prismatic in addition to being ho
mogeneous, elastic, and isotropic. The formulation of this 
problem is based on the Bernoulli-Euler theorem for beams 
which states that the curvature is proportional to the bending 
moment. When applying this theorem, the moment curvature 
relationship is written in a general form, so that large as well 
as small deflections can be computed. In the work presented 
here, apart from the assumptions inherent in the use of the 
Bernoulli-Euler equation, it is also assumed that the beam is 
inextensible. 

The computer program developed in this research is capable 
of analyzing cantilever beams subjected to loads with any angle 
of inclination. However, in this paper the results are presented 
for cases in which the forces are applied at angles of inclination 
of 45, 90, 135, and 180 degrees measured with respect to the 
original undeformed axis of the beams. The software written 
in this work employs the Fortran programming language as 
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where 

Fig. 1 Deflected shape of a cantilever beam subjected to an inclined 
end load 

implemented in NAS/XL-60, a mainframe computer system 
at Clemson University. 

In this paper, the formulation of the problem is presented 
for the case when the angle of inclination of the load measured 
with respect to the undeformed axis of the beam is between 0 
deg and + 180 deg. Obviously, the equilibrium configurations 
of the beam subjected to loads with angles of inclination in 
the range between 0 deg and - 180 deg are merely the mirror 
images of the equilibrium configurations obtained for the 
positive range of angles of inclination. 

Theoretical Formulation 
As shown in Fig. 1, the cantilever beam is subjected to an 

inclined load P at the free end. The origin is placed at the 
supported end of the beam and downward deflection is con
sidered positive. 

Upon substituting for the moment in the Bernoulli-Euler 
equation and taking the derivatives of both sides of this equa
tion with respect to S, 

EI —2 = P(cos/3sin^> - sin/3cos</>), 
U i J 

(1) 

where E,I,4>, and S are, respectively, the modulus of elasticity, 
moment of inertia of the cross-section, slope, and arc length. 
Note that (3 is the angle of inclination of the load measured 
with respect to the undeformed axis of the beam as shown in 
Fig. 1. 

The nonlinear differential equation of the beam given in (1) 
can be integrated numerically to yield the solutions for the 
deflected shapes of the beam. However, since not all the re
quired boundary conditions are known at either end of the 
beam, the numerical integration process is an iterative one. 
The approach introduced by Frisch-Fay (1961) circumvents 
many of the problems involved in the straightforward inte
gration of (1). Using this approach and introducing a dimen-
sionless parameter a defined as 

a = + (2) 

where L is the undeformed length of the beam, the expression 
for the curvature of the beam is obtained as 

d<j> \fla i 
— = ±—— Vcos(/3-y)-cos(/3-0) . (3) 

In (3), y is the slope at the free end of the beam. Introducing 
a new variable 0 defined as 

fl = j 3 -« , (4) 

and assuming that the beam is inextensible, (3) can be used to 
yield 

1 ?°L dO 
a= =F-

\fl J/3 \fcos9i^cos9 
(5) 

. = 0-7- (6) 

Although a complete solution for the end slope of a cantilever 
beam corresponding to a particular value of a appears possible 
through the direct use of (5), this equation has several short
comings. First, the sign on the right side of (5) is not clearly 
established. The sign in this equation is determined by the sign 
of the beam's curvature given in (3). If the curvature along a 
deflected length of the beam changes sign, the signs of (3), 
and (5) also change (i.e., for this deflected shape of the beam 
the sign in (5) is sometimes positive and sometimes negative). 
Since the locations and number of points at which the curvature 
changes sign along the length of the beam is not known at the 
outset, (5) cannot be used without modification to obtain the 
end slopes for beams along which the curvature changes sign. 
Thus, further transformation of (5) is necessary. 

The second shortcoming of (5) is that the integrand shown 
in this equation has a singularity at its upper limit of integration 
when d = 0L. The problem associated with this singularity in 
the numerical integration process are also removed through a 
further transformation of (5). To remedy the shortcomings of 
(5), two new variables, \j/ and k, are introduced as: 

sin i// = : 1 + cos5 

and 

** = 
1+ COS0£ 

Using (7), 

± c o s | — 

8ff), (4), and (6), Eq. (3) can be written as 

dS L v 

Upon rearranging (9), 

dS = 
o 

±~ 

•^sinV-

d\fr 

*o yj 1 - ^sinfy 

(7) 

(8a) 

(m 

(9) 

(10) 

where \j/0 and \ps are, respectively, the value of \p at the origin 
and at the end of arc length S measured from the fixed end 
of the beam. Utilizing (4) and (7), 

1̂0 = sin" 

cos 

ts = sin" 

cos 
0-<fc 

(11) 

(12) 

Using (10) and noting that the beam was assumed inextensible, 
the expression for a in terms of \j/ can be written as 

±[F(k,+L)-F{k,+0)], (13) 
*o V l -A ^s in 2 ^ 

where \j/L is the value of i/< at the free end of the beam defined 
by 

^L = sin ' (±1) . (14) 

Also note that in (3),F(k, i//L) and F(k, \p0) are elliptic integrals 
of the first kind. 

Now the authors proceed to show how the shortcomings of 
(5) have been remedied through the introduction of variables 
\j/ and k and conversion of (5) to (13). Note that d\p/dS in (9) 
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Fig. 2 Distributions of the integrand in Eq. (13) versus <p plotted for 
several values of k2 

can never be zero for finite values of a. The value of d\{//c/S 
can only be zero when k2 = 1; in this case the term F(k, i(/L), 
and consequently a in (13) become infinitely large. Therefore, 
it is concluded that the value of d\p/dS along the length of the 
beam can never change sign for finite values of a (i.e., even 
if the curvature changes sign). Using this argument, it can be 
seen that the sign in (9), and (13) no longer originates from 
the sign of the curvature, as was the case in (5). The sign can 
be chosen as either plus or minus as will be discussed later in 
this paper. Therefore, the sign problem associated with (5) has 
been removed as a result of the transformation of this equation 
to (13). It is no longer necessary to change the sign in (13) 
every time the curvature changes sign along the length of the 
beam. Furthermore, the integrand in (13) does not have a 
singularity for finite values of oc. 

The derivation of (13) follows the procedure introduced by 
Frisch-Fay (1961) to analyze the deflection of thin cantilever 
beams. In the work presented by Frisch-Fay (1961), a single 
equilibrium solution was obtained for a cantilever beam having 
a specific end load and a specific set of beam parameters. 
However, as can be seen from (11), (14), and the discussion 
that follows, the upper and lower limits of the integral given 
in (13) can have multiple values. Thus the possibility exists 
that, for a given set of beam parameters and end loading, there 
may be multiple solutions satisfying (13). The work which 
follows develops these alternate beam solutions. 

Examining (11) and keeping in mind that in this equation 
the value of k can be positive or negative, it is noticed that 
when I \p0 I is in the range 0 < I \p01 < 27r, eight different values 
for i/-0 are possible. Upon introducing a new variable to defined 
as 

cos 

where 

0 < c o -

these eight solutions for i/-0 can be identified as w, ( -2 i r + 
to), ( + 7T - to), ( —7r - to), -co, ( + 2ir — to), ( — 7r + co), and 
( + 7T + co). Similarly, examining (14), it is observed that when 
I \j/L I is in the range 0 < I \j/L I < 2ir, four different values for 
\)/L are possible. These four solutions for \pL are + 7i72, 

- 3 T T / 2 , —W/2, and +37r/2. The eight possible values for \p0 

(when 0 < li/-0l < 27r), and four possible values of \j/L (when 
0 < \\j/L\ < 2ir) can be used in 32 different combinations in 
(13). 

The functional relationship between the integrand shown in 
(13) and \/<is plotted for several values of k2 in Fig. 2. Studying 
the 32 combinations of the upper and lower limits of the in
tegral in (13) and Fig. 2, it can be noted that half of the 32 
integrals have positive values and the rest have negative values. 
Since the value of the parameter a in (2) is defined as positive, 
by narrowing the choices of \p0 and \pL combinations to the 
ones for which the integral in (13) is positive, (13) can be 
rewritten as 

+L d\j, 

*o y i - A^sinV 
--F(kM-F(kM. (16) 

Since the integrand in (16) is both an even function (the 
value of the integrand is the same when evaluated at the same 
positive and negative value of \i>), and also periodic, some of 
the 16 possible combinations for \j/Q and 1/7. in (16) yield identical 
integrals. It has been determined in this research that a com
plete set of solutions for the deflected equilibrium configu
rations of cantilever beams can be obtained by considering 
only 7 of these 16 possible combinations. These seven com
binations are listed in (17) through (23) as: 

Integral 1: 

a=\2f(k, W<ty. (17) 

O5) Integral 2: 

XMW- (18) 

Integral 3: 

AMW- (19) 
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Integral 4: 

Integral 5: 

Integral 6: 

Integral 7: 

AWW. 

a= f{k,+W-

« = Ak.+W. 

/(*.*W, 

where in (17) through (23), 

Vl-A^sinV 

(20) 

(21) 

(22) 

(23) 

(24) 

It should be stated that the seven possible independent com
binations of i/'o and \j/L shown in (17) through (23) are for the 
case when 0 < I î o I < 27r and 0 < 1 .̂1 < 2-n-. There are 
other combinations if we consider all possible values of \[/Q and 
\pL. These combinations can be obtained by adding and sub
tracting multiples of 2TT to the upper and lower limits of the 
integrals listed in (17) through (23). However, the combinations 
obtained in this manner result in larger values of a and are 
not included in the present discussion. 

of the beam. In this figure, the number next to each distribution 
indicates which integral produced that particular distribution. 

The number of equilibrium configurations of a cantilever 
beam, for any particular value of the parameter a, can be 
determined by drawing a horizontal line at that value of a on 
the a versus end slope plot, and counting the number of times 
this line intersects the plotted curves. For example, in Fig. 3, 
when |3 = 135 deg, only one equilibrium configuration exists 
for a = 1, while seven equilibrium positions are possible for 
a = 12. The values, or the ranges of values of cc and the 
corresponding number of equilibrium positions of cantilever 
beams, are summarized in Tables 1 through 4, for the cases 
when (3 = 45 deg, 90 deg, 135 deg, and 180 deg, respectively. 

From an inspection of Tables 1 through 3, it is seen that 
when a beam is subjected to an inclined end load (other than 
an axial end load), the beam can have from one to seven 
different equilibrium configurations. It is also noted that the 
beam can possess an even number of equilibrium positions for 
certain specific values of a and an odd number of equilibrium 
positions for specific ranges of a values. The even number of 
solutions correspond to an " a = constant" line which is just 
tangent to the relative minimum points of the a versus end 
slope curves. For example, in Fig. 3, when j3 = 135 deg, a 
horizontal line corresponding to the equation a = 2.438 is just 
tangent to the a versus end slope curve for integral 4, and 
intersects the a versus end slope curve for integral 1. 

Note that the a values of TT/2, 37r/2, 57r/2, 77r/2, and 9ir/ 
2 given in Table 4 correspond, respectively, to the first five 
buckling loads for a cantilever beam. When subjected to an 
axial load (/3 = 180 deg), the beam can have one, three, five, 
seven, or nine different deflected shapes. Note that for this 
case (the axial load case) the straight undeformed position of 
the beam is counted as one possible equilibrium configuration 
of the beam. 

Number of Possible Equilibrium Configurations 
Plotting the variance of a with the end slope using the expres

sions of a given in (17) through (23), it is established in this 
research that multiple solutions for y are possible correspond
ing to a specific value of a. This indicates that multiple equi
librium configurations are possible for a beam and loading 
condition. 

This variance of a with end slope is plotted in Fig. 3, cor
responding to the case when the angle of inclination of the 
load is 135 deg with respect to the original undeformed axis 

Computation of the End Slope 
Although the use of (16) permits a determination of a if the 

end slope 7 of a beam is known, an analyst is generally faced 
with the inverse problem, i.e., having to determine the end 
slope of a beam when the value of a is specified. Note that in 
(16), both k and i/»0

 a r e functions of the end slope. 
For a specific value of a, a = a*, the intersection of the 

line a = a* with the curve a = ct(y) produces the value or 
values for the end slope of the beam corresponding to a*. 
Many numerical techniques exist which establish the solution 

/3=I35° 

END SLOPE (deg.) 

Fig. 3 Distributions of a versus end slope angle for the case when 
/3 = 135 deg 
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Table 1 The ranges or values of a and the corresponding numbers of 
equilibrium configurations of cantilever beams subjected to end loads 
with angle of inclination of 45 deg 

a Ranges/Values Equilibrium Configurations 

0 < a < 4.479 I 

a = 4.479 2 

4.479 < a < 9.442 3 

a = 9.442 4 

9.442 < a < 14.295 5 

a = 14.295 6 

14.295 < a < 19.200 7 

In Tabic 1, the limiting values of a arc rounded off to tlircc decimal digits. Also note that the a values of 
4.479, 9.442, 14.295, and 19.200 correspond to the relative minimum points of the a vs. end slope distrib
utions for this case. 

Table 2 The ranges or values of a and the corresponding numbers of 
equilibrium configurations of cantilever beams subjected to end loads 
with angle of inclination of 90 deg 

a Ranges/Values Equilibrium Configurations 

0 < « < 3.214 1 

a = 3.214 2 

3.214 < a < 7.142 3 

a = 7.142 4 

7.142 < a. < 10.935 5 

a = 10.935 6 

10.935 < a < 14.832 7 

In Table 2, the limiting values of a. are rounded off to three decimal digits. Also note that the a values of 
3.214, 7.142, 10.935, and 14.832 correspond to the relative minimum points of the a. vs. end slope distrib
utions for this case. 

Table 3 The ranges or values of a and the corresponding numbers of 
equilibrium configurations of cantilever beams subjected to end loads 
with angle of inclination of 135 deg 

a Ranges/Values Equilibrium Configurations 

0 < «. < 2.438 1 

a = 2.438 2 

2.438 < a < 5.938 3 

a = 5.938 4 

5.938 < a < 9.325 5 

a = 9.325 6 

9.325 < a < 13.068 7 

In Table 3, the limiting values of a are rounded off to three decimal digits. Also note that the a values of 
2.438, 5.938, and 9.325 correspond to the relative minimum points of the distributions shown in Fig. 3. 
The value of a = 13.068, although not shown in Fig. 3, corresponds to the relative minimum value of the 
integral obtained by adding An to the upper limit of integral 1. 

Table 4 The ranges of a and the corresponding numbers of equilibrium 
configurations of cantilever beams subjected to end loads with angle 
of inclination of 180 deg 

a Ranges Equilibrium Configurations 

0 < a < Tift 1 

TI/2 < a < 3TI/2 3 

3ir/2 < a < 5ir/2 5 

5ir/2 < a < Inft 7 

7TI72 < a < 9ir/2 9 

The a values of TT/2, 37T/2, 5K 2, 7TT/2, and 9TT/2 correspond to the minimum points of the a vs. end slope 
distributions for this case. Also note that these five values of a correspond respectively to the first five 
buckling loads for a cantilever beam. 
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for a(y) = a*. One such technique used in this study is the 
False-Position Method, a relatively simple scheme well adapted 
for use with a computer. This method has been discussed in 
many textbooks (e.g., Chapra and Canale, 1985). 

Solution Procedure for Obtaining the Equilibrium Con
figurations 

In this section of the paper, the focus will be on determi
nation of the deflected equilibrium configurations of the beams 
once the end slopes have been computed. If the slope at the 
end of any particular equilibrium configuration of a beam is 
known, several techniques can be employed to obtain the co
ordinates of points along the length of the beam. In the fol
lowing discussion, a technique similar to the one proposed by 
Frisch-Fay (1961) has been utilized to obtain all the possible 
solutions. This technique involves the computation of slopes 
and x and ^-coordinates along the deflected length of beam in 
terms of the elliptic integrals. 

Since in our discussion we have limited the choices of fa 
and fa to the ones listed in (17) through (23), (10) can be 
written as 

S = -[F(k,fa)-F(k,fa)], (25) 

where F(k, fa) and F(k, fa) are elliptic.integrals of the first 
kind. To obtain the value of fa- corresponding to a particular 
value of S in (25), again a numerical procedure such as the 
False-Position Method can be applied. After calculating the 
correct value of \ps (at any arc length S), the slope angle <t>s 

at that location can be determined utilizing (12) 

• 4>s = l3-2cos~l(ksm fa). (26) 

The x and .y-coordinates at the end of any arc length S for 
a particular equilibrium configuration can be obtained by uti
lizing the equations: 

Xs= [ cos(P-6)dS, (27) 

and 

Ys= sinW-6)dS. (28) 
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Equilibrium configurations of a cantilever beam for the case 
= 135 deg 

When the expressions for cos 0 from (7), sin 0, and dS from 
(10), are substituted in (27) and (28), the results are: 

Xs = - [cosP[-2E(kM + F(kM + 2E(kM-F(kM] 
a 

+ 2k sin/3[-cosi/'5 + cosi/'o]!, (29) 

and 

Ys = - {sm(3[-2E(k,ts) + F(k,ts) + 2E(kM-F(kM] 
a 

-2k cos (3[-cos 1̂5 + cosiZ-o]!. (30) 

In (29) and (30), E{k, \ps) and E(k, \p0) are elliptic integrals 
of the second kind, while F( k, \ps)< F{ k, 4>o) are elliptic integrals 
of the first kind. 

Examples of the possible deflected equilibrium configura
tions of cantilever beams in each one of the ranges of a given 
in Tables 3 and 4 are plotted in Figs. 4 and 5. These plots are 
for cases when /3 = 135 deg, and 180 deg. In all the examples 
shown in these figures, the beam parameters are kept constant 
and values of a are varied by increasing or decreasing the 
applied load. The specific parameters of the beam used in this 
study are: 
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Fig. 5 Equilibrium configurations of a cantilever beam for the case 
when (i = 180 deg 

L=\ m (39.37 in.) 
E = 207GPa(30xl0 6 ps i ) 
/ = 150x 1(T14 m4 (3.60x 10^6 in.4). 

In Figs. 4 and 5, the numbers next to each equilibrium con
figuration indicates which integral was used to obtain that 
particular equilibrium position. 

It should be mentioned that in this study all numerical in
tegrations were performed utilizing the Ten Point Gauss-Le-
gendre Formula. The weighting factors and function arguments 
in this formula were obtained from Lowan et al. (1942). 

Summary and Comments 
It is demonstrated in this paper that the number of possible 

deflected shapes of a cantilever beam subjected to an end load 
is dependent on a dimensionless parameter a. This parameter 
is a function of the applied load and also a function of the 
length, moment of inertia, and modulus of elasticity of the 
beam. It has been determined that as a increases, the number 
of deflected configurations of the beam also increases. Deter
mination of the ranges of a and the numbers of specific equi
librium configurations of the beams in each one of these ranges 
are also discussed in this paper. 

Studying the deflected shapes of the beams similar to the 
ones shown in Figs. 4 and 5, it is noted that alternate equilib
rium configurations for cantilever beams subjected to end loads 
are possible only for values of a. which produce very large 
deflections of the beams. This indicates that only one equilib
rium shape is possible for all the cases in which small dis
placement theory can be used with only small error as a basis 
for the analysis. 
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Unilaterally Supported Plates on 
Elastic Foundations by the 
Boundary Element Method 
A boundary element solution is developed for the unilateral contact problem of a 
thin elastic plate resting on elastic homogeneous or nonhomogeneous subgrade. The 
reaction of the subgrade may depend linearly, or nonlinearly, on the deflection of 
the plate. The contact between the plate and the subgrade is unbonded. The subgrade 
surface is not necessarily plane, and miscontact between plate and subgrade due to 
initial gaps is also encountered. The solution procedure is based on the integral 
representation of the deflection for the biharmonic equation in which the unknown 
subgrade reaction is treated as loading term. The effectiveness of the proposed 
method is illustrated by several examples. 

1 Introduction 
In most investigations concerning plates supported on elastic 

foundation it is assumed that the bodies in contact (plate and 
subgrade) are bonded to each other and, consequently, com
pressive as well as tensile reactions are considered to be ad
missible. In this case the contact region is a priori known and 
the main effort is directed towards the evaluation of the de
flection surface and the contact pressure. 

However, for many foundation materials, the admission of 
tensile stresses across the interface separating the plate from 
the foundation is not realistic. When there is no bonding be
tween plate and subgrade, regions of no contact develop be
neath the plate under certain loading conditions and separation 
between the two bodies takes place at contours where the 
compressive pressure vanishes. Consequently, the contact re
gion is unknown and the vanishing of the compressive stress 
provides the condition for the determination of the contact 
region. 

Enormous work has been done for plates resting on elastic 
foundation with bonded contact between plate and subgrade. 
Since no attempt is made here to summarize the various re
searches in this area, we mention only the books of Selvadurai 
(1979) and Vlasov and Leontiev (1966) where extended liter
ature on this subject is presented. On the other hand, relatively 
little work has been done for plates unilaterally supported on 
elastic foundation (Selvadurai, 1979). To the authors' knowl
edge, with regard to the unbonded plate contact, the majority 
of the presented methods are limited to axisymmetric problems 
(Weitsman, 1969; Pu and Hussain, 1970; Gladwell and Iyer, 
1974). Problems involving a receding contact between an elastic 
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layer and a half-space are analyzed by Keer et al. (1972) and 
Tsai et al. (1974) leading to the Fredholm integral equations 
related to the contact tractions. Solution for an infinite plate 
with unbonded contact on a Winkler foundation is given by 
Weitsman (1969), and for a circular plate by Weitsman (1970) 
and Hofmann (1938). An incremental numerical technique for 
the simulation of structural elements in receding/advancing 
contact (Mahmoud et al., 1986), the boundary integral equa
tion method for the unilateral buckling of thin elastic plates 
(Bezine et al., 1985), variational methods (Kartvelishvili, 1976), 
and an attempt towards mixed finite elements (Panagiotopou-
los and Talaslidis, 1980) have also been used. 

In this paper, a boundary element solution is presented for 
the unilateral contact problem of a thin elastic plate resting 
on elastic homogeneous or nonhomogeneous foundation. The 
plate may have arbitrary shape and be subjected to any loading 
and boundary conditions. The subgrade model consists of 
closely spaced independent springs. The subgrade reaction may 
depend linearly (Winkler) or nonlinearly on the deflection. The 
subgrade surface is not necessarily plane, thus, miss contact 
between plate and subgrade due to initial gaps is also encoun
tered. The solution procedure is based on the integral repre
sentation of the deflection which is established using the 
fundamental solution of the linear part of the governing op
erator, whereas the unknown subgrade reaction is included in 
the loading term. Application of the boundary element tech
nique and Gauss integration for the domain integrals involving 
the unknown domain quantities yields a system of nonlinear 
algebraic equations from which the deflection surface is com
puted by an iterative process. 

Actually the proposed method is not a pure boundary ele
ment method, since it requires discretization within the domain 
to determine the unknown field quantities. However, the num
ber of the linear equations is still defined by the boundary 
discretization, thereby retaining most of the advantages over 
a possible pure domain discretization method. The domain 
discretization, in this work, is performed using Gauss inte-
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Fig. 2 Two-dimensional region occupied by the plate 

Fig. 3(a) 

Fig. 3(b) 

Fig. 3 Unilateral contact law p= f{w- d)U(w- d) for a linear (a) and a 
nonlinear (b) Winkler-type spring 

gration over regions of arbitrary shape (Katsikadelis and Sa-
pountzakis, 1987; Katsikadelis, 1990) which renders the method 
very effective. 

Several numerical examples are worked out to illustrate the 
effectiveness of the proposed method. 

2 Governing Equations 
Consider a thin elastic plate of thickness h occupying the 

two-dimensional multiply connected region R of the xy-plane, 
bounded by the K+ 1 curves C0, Cu C2 CK and resting, 
in general, on a nonlinear Winkler-type elastic foundation 
(Figs. 1 and 2). The curves C, (i = 0, 1, 2, ..., K) may be 
piecewise smooth, i.e., the boundary may have a finite number 
of corners. For unbonded contact between plate and subgrade, 
the interaction pressure at the interface is compressive and can 
be represented by the following relation: 

p=f(w-d)U(w-d) (1) 

in which f(w-d) is in general a nonlinear function of its 
argument w-d; w=w(*, y) is the deflection of the plate; 
d = d(x, y) is a function representing the initial gap between 
plate and subgrade (Fig. 1); and U(w-d) is the unit step 
function defined as 

U(w-d)-
if w-d<0 

if w-d>0 
d > 0 . (2) 

The particular case f(w-d) =k(w-d), k being a constant 
denoting the subgrade reaction modulus, describes the con
ventional Winkler model (Fig. 3). 

Assuming that there are no friction forces at the interface 
the deflection w(P) at any point P: (x, y)iR satisfies the 
following differential equation 

DvAw+f(w-d)U(w-d)=g (3) 

where V4 = (V2) = (d2/dx2+ d2/dy2)2 is the biharmonic oper
ator; g = g(x, y) is the transverse loading; £> = Eh3/12(l -v2) 
is the flexural rigidity, E and v being the elastic constants of 
the material of the plate. 

Moreover, the deflection w must satisfy the following 
boundary conditions on the boundary C= U\z^Ci of the plate 

a.\\v + a2Vw = ct!3 

dw 
ft —+ ftMw = ft, 

dn 

(4a) 

(4b) 

where a-, = cti(p), ft = ft(p),pi.C(i = 1,2, 3) are given functions 
specified on the boundary Cand M, Fare differential operators 
defined in intrinsic coordinates as (Katsikadelis, 1982) 

M=-D V2 + (*>-!) 
dj + "'dn 

-D ,K-
dn {V l)ds\dsdn "ds 

(5a) 

(5b) 

in which K = K(S) is the curvature of the boundary; d/ds and 
d/dn denote differentiation with respect to the arc length s and 
the outward normal n to the boundary, respectively. The quan
tities Mw and Vw represent the bending moment and the ef
fective shearing force along the boundary. The boundary 
conditions (4a,b) are the most general linear boundary condi
tions for the plate problem. It is apparent that all kinds of 
conventional boundary conditions (clamped, simply supported, 
free or guided edge) can be derived from these equations by 
specifying appropriately the functions oij(s) and ft(s) (e.g., for 
the clamped egde it is ai = ft=l, a2 = a3 = ft = iS3 = 0, for the 
simply supported edge it is ai = ft, = 1, a2 = a3 = ft = ft = 0). 

In case of free or transversely elastically restrained edges, the 
boundary conditions (4a,b) must be supplemented by the corner 
condition 

cuw + c2klTw]\k = c3k, c2k* 0 (6) 

where cik (i=l, 2, 3) are specified functions at the corner point 
pk and Tis the operator (Katsikadelis, 1982) 

T=D(\ -V)\^fn-Kj)- (7) 

Therefore, Tw is the twisting moment along the boundary and 
jrvv]]^ is its jump of discontinuity at the corner point pk. 

3 Solution Procedure 
For any pair of functions w and v which are four times 
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continuously differentiable inside R and three times continu
ously differentiable on the boundary C, the following recip
rocal identity, known also as Rayleigh-Green identity, is valid 
(Duff and Naylor, 1966): 

« 0 = - ^ j j AJ(w-d)U(w-d)da + ̂ \j\j A&da 

II. ( u V 4 w - w'V4v)da 

3 2 9 2 dv 2 d w ' . , 
v— V w - w — V v-— V w + —- V y Ids, (8) 

d« d« 3« an 

application of relation (8) for the function w satisfying Eq. 
(3) and the function 

v = r2lnr, r= \P-Q\ (9) 

which is a particular singular solution of the equation 

Dv*v = 6(P-Q) P:(x,y), Q:ti,v)tR. (10) 

The following integral representation for the deflection w is 
obtained 

w(P)= - ^ j j A,(r)f(w~d)U(w-d)da 

lAi(r)Q + A2(r)X+A3(r)$ + A4(r)'<lr]ds (11) 

- (A10 + A 2A r+A3* + A4*)ds (17) 

« * = - - Azf(w-d)U(w-d)da 

' + Di J Algda~ J ( A i * + A 2 ^ ) * (18) 

where a is the angle between the tangents at point p (see Fig. 
2). Relations (11), (15), (16), (17), and (18) constitute a set of 
five simultaneous equations which can be solved to yield the 
deflection w of the plate. 

The stress resultants at a point P inside R are obtained by 
direct differentiation of Eq. (11) using the relations 

M*=-D 
d2w dlw 

dx1 •+v-
dy 

M , •D 
d2w 

7+V-
d2w 

i 

dyL ax 

Qx=-D 

M, 

dx 

xy-D(\~v) 

w 
- Qy=~D 

d2W 

dxdy 

dV 2 w 
~dy~ 

(19) 

where the kernels A, ( r ) , ( i = 1, 2, 3, 4) are given as 

COSip 

while the stress resultants M„, Mt, M„„ V„ along the boundary 
are obtained from relations 

A,(/-) = A2(r)=lnr+\ (12a,b) 
M„=-D 

M,= -D 

$+(V-1)[-^ + KX 
a2o 

A3(r)=--(2/- /«/- + /-)cos<o A4(r)=-r2lnr (I2c,d) 
4 4 

pi-(p-l)[-^ + KX 
d2a 

and the following notation has been used 

Q=w, X=-—, * = v 2 w , * = — v 2 w . 
an dn 

. . ™, ^ x ao 

(13) 
V„=-D 

^'d2X 8K dQ d2Q 
(20) 

Notice that for the line integral it is r = IP — q I, whereas for 
the domain integrals, it is r = \P-Q\, P, QtR, q€C; ^ = r ^ n 
is the angle between the direction of r and the normal n to the 
boundary at point q. 

Application of the operator V 2 = d2/dx2 + a2/by2 to Eq. (11) 
results in the integral representation of the Laplacian as 

V2w(P) = - ^ j J A2(r)f(w-d)U(w-d)da 

1 1 + T~R\\ ^r)sda-—\ [A1(/-)# + A 2 ( /")*]*. 
2TTJJJ JR Z 7 r J c 

( [A,( (14) 

Equation (11) involves five unknown quantities, i.e., the 
deflection w inside the domain R and the boundary quantities 
Q = 0 ( s ) , X=X(s), $ = * ( s ) , * = * ( 5 ) . Four additional 
equations are established using the boundary equation method 
(Katsikadelis and Armenakas, 1989). According to this method 
the boundary conditions (4a,b) by virtue of Eqs. (5a,b) and 
notation (13) can be written as 

ds \ds ds i 

The indicated derivatives in Eqs. (19) are given by Eqs. (Al) 
of the Appendix. 

4 Numerical Solut ion 

An analytic solution of the system of simultaneous equa
tions, which form relations (11), (15), (16), (17), and (18), is 
out of the question. However, a numerical solution is feasible. 
The differential equations are treated using the finite difference 
method, the boundary integrals using the boundary element 
method, and the domain integrals using the finite sector method 
(Katsikadelis, 1990). Thus, using constant boundary elements 
to approximate the unknown boundary quantitites, unevenly 
spaced finite difference to approximate the derivatives, and a 
collocation technique, the following system of simultaneous 
algebraic equations is established: 

U]Q — Da.2 = a3 
(15) 

A n A n 0 A! 

A2i A22 A23 0 

A31 A32 A3 3 A34 

0 0 A43 A44 

1 n 
X 

* 

* 

= 

B, 
B2 

B3 

B4 

+ 

0 
0 

c3 

c4 

tp] 

(21«) 

PiX-Dfo * + ( " ~ 1 ) , i ? + K j s r 
w = B5-t-C5p + [A51 A5 2 A53 A54][fi X # *]T (21ft) 

(16) 
where 

Moreover, letting point P~p€C in Eqs. (11) and (14), the 
following two boundary integral equations are derived 

0 = [0, O2 • • • QNf X = [Xi X2--- XNf 

(22) 
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are the values of the unknown boundary quantities at the nodal 
points of the N boundary elements 

W = [ W i VV2 wM] 

and 

P=[Pi Pi ••• PMY (23) 
are the values of the deflection w and the subgrade reaction 
p=f(w-d)U(w-d) at theMGauss integration points inside 
the domain R. 

The elements of the constant matrices Aw (k= 1, 2, 3, 4, 5, 
1=1,2, 3,4), B m ( m = l , 2 , 3,4, 5), Cm (m = 3, 4, 5) are given 
by Eqs. (A3) in the Appendix. 

The integrals in the expressions for the coefficients (Au)jj 
and (An)ij have been obtained using the relation cosipds=rdu 
(Katsikadelis and Armenakas, 1984). 

Equations (2la,b) are linear with respect to the boundary 
quantities fi, X, # , ¥ which can be readily eliminated from 
Eqs. (216). Thus, solving Eq. (21a) for $2, X, #, ^ and sub
stituting them into Eqs. (2\b), we obtain the following equa
tions: 

(24) 

where 

H = C5 + [A51 A52 A53 

G = B5 + [A51 A52 AS3 

w = H p + G 

A54] 

A54] 

A„ A,2 0 

A21 A 22 A23 

A31 A32 A 3 3 

0 0 A43 

"A„ A12 0 
A21 A22 A23 

A31 A32 A33 

0 0 A43 

AM 

0 

A34 

A44_ 

AM 

0 

A34 

A44 

- 1 

- 1 

0 

0 

C3 

_c4 

fB," 
B2 

B3 

B4 

{25a) 

(25b) 

Equations (24) constitute a system of nonlinear algebraic 
equations which can be solved numerically to yield the values 
of the deflection at the internal Gauss points. Back substitution 
into Eqs. (21a) gives the values of the boundary quantities fi, 
X, $, ̂  at the nodal points. Subsequently, using the discretized 
form of Eq. (11), the deflection at any point P within the plate 
is computed. That is, 

w(P) = -2irj^(Cs)Pkf(wk-dk)U(wk-dk) + (Bs)P 

+ J]l(A5i)pjQj(A52)PjXj+ (Aa)PJ*j+ (AM)Pj*j\. (26) 
y = i 

The solution of Eq. (24) for the numerical examples pre
sented in the next section has been accomplished iteratively by 
employing the two-term acceleration method (Isaacson and 
Keller, 1966). 

An initial vector, say w<0) = 0, is assumed. Using this vector 
and Eq. (1), the values of the subgrade reaction p ( 0 ) at the M 
Gauss points inside the domain R are obtained. Introducing 
the vector p<0) into Eq. (24), a vector w(1) is computed. Sub
sequently, the vector w1*', k>2 is obtained from Eq. (24) as 

w(*) = Hp«*-1, + G (27) 

where 

p\k-X)=p(aw\k-l) + 0w}k-2)), a + /3=l, / = 1 , 2, ..., M. (28) 
1 
The procedure converges to the solution vector w by choosing 
appropriately the weight factors a and /3. For an example 
problem, the region of the permissible values of the parameters 

0.4 0.6 
a(=1-p) 

Fig. 4 Permissible values of the weight factors a and p for the con
vergence of the two-term acceleration method for a clamped or a simply 
supported rectangular plate with ratio b/a= 1.2 

- U n i l a t e r a l 

_ B i l a t e r a l 

-0.5 0.0 0.5 
Point Locat ion (m ) 

Fig. 5 Deflections along the diameter of a clamped circular plate 
(D = 192.3077) 

a and |S was investigated (Fig. 4). The convergence depends 
on the mechanical and geometrical properties of the plate and 
the subgrade. Moreover, the optimum values were observed 
on the line separating the permissible and not permissible re
gions. 

It should be mentioned that the kernels 

32A4(Q d2A4(r) 82A4(r) dA2(r) 3A2(r) 
dx2 ' dy2 ' dxdy ' dx ' dy 

r-\P-Q\, P, Q€i? involved in the domain integrals (Eqs. 
(Al) of the Appendix) exhibit a singularity at P = Q and special 
care must be taken for their evaluation. This singularity is 
extracted before employing the Gauss integration using the 
following technique. 

In general, these kernels can be written in the form 

F(P,Q)=R(P,Q)+S(P,Q) (29) 

where R(P,Q) and S(P,Q) are the regular and singular parts 
of the function F(P,Q), respectively. Thus, the domain in
tegrals can be written as 

J j F{P,Q)h(Q)daQ= J j R(P,Q)h(Q)daQ 

+ JJ [h(Q)-h(P)]S(P,Q)daQ 

+ h{P)\i\l S{P,Q)daQ. (30) 

With the assumption that dh/dr is bounded, it is 

lim[h{Q)-h(P)]S(P,Q)=0. 
P-Q 

Consequently, the first two-domain integrals in the right-hand 
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Point Loca t ion (m) 

Fig. 6 Deflections along the diameter of a clamped circular plate 
(0=192.3077) 

i- i ^ir1 

Fig. 7 Simply supported circular plate resting on an absolutely rigid 
foundation with initial gap (a = 2.5, D = 175, & = 0.00037) 

side of Eq. (30) are regular. Finally, the third domain integral 
involving the singular part S(P,Q) can be converted into a 
line integral on the boundary C of the plate (Nerantzaki and 
Katsikadelis, 1988). 

5 Numerical Examples 
On the basis of the analytical and numerical procedures 

presented in the previous sections, a computer program has 
been written and representative examples have been studied to 
demonstrate the range of applications of the developed method. 

In all the examples treated, the numerical results have been 
obtained using 60 constant boundary elements with parabolic 
approximation of their geometry and 100 Gauss nodal points 
by dividing the interior of the plate into 4 sectors on each of 
which a 25 point Gauss-Radau integration is performed. 

The worked-out examples are: 
1 a clamped circular plate with unit radius loaded by a unit 

concentrated moment M= 1 at its center and resting on a ten-
sionless foundation with X = a/^^jD/k = 3. In Fig. 5 the de
flections of the plate along its diameter are compared with the 
corresponding values of the deflection surface of the plate 
resting on a bilateral Winkler foundation with the same 
subgrade reaction modulus. Moreover, in Fig. 6 the deflections 
along the diameter of the plate loaded by a unit concentrated 
load and a concentrated moment at its center and resting on 
a tensionless foundation with X = a/4\/D/k =11 are compared 
with the corresponding values of the deflection surface of the 
plate resting on a bilateral Winkler foundation having the same 
subgrade reaction modulus. 

2 a uniformly loaded circular plate, as shown in Fig. 7, 
simply supported along the edge and resting on an absolutely 
rigid foundation with initial gap 5. The radius 6 of the contact 
area of the aforementioned plate obtained by this method, 
Z? = 0.78, is in very good agreement with the corresponding 
value obtained from an analytical solution, 6 = 0.76 (Hof-
mann, 1938). 

3 a clamped and a simply supported rectangular plate with 
sides a = 5.0 and 6 = 6.0, loaded by a concentrated load P= 1 

Fig. 8(a) 

Fig. 8(b) 

t) 

X) 

/ 
/ / ° 

\° 

T 

~ ^ = ^ \ 

_ 3 ^ c 
j 

<E 

A 
\° ^ 

OX 

0 ) 

( i 

Fig. 8(c) 
Fig. 8 Deflection contours of a clamped rectangular plate (D = 192.3077) 
resting on a tensionless linear foundation with subgrade reaction mod
ulus (a) X = 3 / V M = 3 (Aw= 0.000033), (b)X = al\[Wk = 5 (Aw = 0.000033), 
(C) X = a / ' V S t = 7 (Aw = 0.0000027). 

at its center and resting on a tensionless linear foundation. In 
Table 1 the deflections of the plate along the center line parallel 
to the jc-axis are presented as compared with the corresponding 
values of the plate resting on a Winkler foundation having the 
same subgrade reaction modulus. Moreover, in Fig. 8 the de
flection contours of the clamped rectangular plate for various 
values of the parameter X are presented. 

4 a simply supported rectangular plate with sides a = 5.0 and 
6 = 6.0 loaded by a concentrated load P= 1 at its center and 
unilaterally supported on a nonhomogeneous or a nonlinear 
foundation. In Table 2 the deflections of the plate along the 
center line parallel to the jc-axis are presented as compared, 
wherever possible, with the corresponding values of the plate 
bilaterally supported. 
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Table 1 Deflections of w = w/(Pa /D) of a rectangular plate 
resting on a Winkler foundation 

Clamped 

= a/4yfD/k--

Simply supported 

\ = a/i4D/k--=ll 
y/b x/a 

Unilateral 
Bilateral 

Katsikadelis 
(1982) 

Unilateral 
Bilateral 

Katsikadelis 
(1982) 

0.0 0.2561E-02 
0.2 0.1201E-02 

0.0 0.4 0.2091E-03 
0.6 - 0 . 5 9 3 4 E - 0 4 
0.8 - 0 . 4 6 3 3 E - 0 4 

0.2551E-02 0.1041E-02 0.1033E-02 
0.1174E-02 0.2181E-03 0.2123E-03 
0.2325E-03 - 0 . 8 2 6 9 E - 0 4 - 0 . 1 1 6 1 E - 0 4 

-0.1732E-04 - 0 . 1 3 3 2 E - 0 3 - 0 . 5 6 1 5 E - 0 5 
-0.2083E-04 - 0 . 8 5 9 3 E - 0 4 0.3589E-06 

Table 2 Deflections vP = w/(Pa/D) of a simply supported 
rectangular plate resting on nonhomogeneous and on nonlinear 
foundations 

y/b x/a Unilateral 

Nonhomogeneous 
f=\6DEwexp 0.1 (x2+y2) 

Bilateral 
Katsikadelis 

and Sapountzakis 
(1987) 

f=wL 
Nonlinear 

/ = 1 0 w ,1/3 

Unilateral 

0.0 0.4912E-02 
0.2 0.3074E-02 

0.0 0.4 0.1204E-02 
0.6 0.2668E-03 
0.8 - 0 . 2 7 1 8 E - 0 5 

0.4900E-02 0.1972E-01 0.3314E-02 
0.3066E-02 0.1670E-01 0.1624E-02 
0.1205E-02 0.1188E-01 0.1761E-03 
0.2745E-03 0.7234E-02 - 0 . 2 6 7 8 E - 0 3 
0.5091E-05 0.3318E-02 - 0 . 2 3 1 2 E - 0 3 

6 Concluding Remarks 
A boundary element solution is developed for the unilateral 

contact problem of a thin elastic plate resting on elastic foun
dation. The main conclusions drawn from this investigation 
are the following: 

1 Plates of arbitrary shape subjected to any type of bound
ary conditions and loading can be analyzed. 

2 The subgrade reaction may depend linearly or nonlinearly 
on the deflection of the plate. 

3 Miscontact between plate and subgrade due to initial gaps 
is also encountered. 

4 The method is well suited for computer-aided analysis. 
5 The iterative method converges. The convergence is slow 

for high values of the parameter X. 
6 The difference between the deflections of unilaterally and 

bilaterally supported plates increases with the eccentricity of 
the load, with the parameter X and decreases with the distance 
from the boundary. 

7 The use of the fundamental solution of the linear part of 
the governing operator alleviates the method from the com
putational difficulties arising from the use of special functions 
(Kelvin, Hankel). 

8 The method retains most of the advantages of a BEM 
solution over a pure domain discretization method. 
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A P P E N D I X 

Derivatives of the Integral Representation for the 
Deflection of the Plate 

d2w(P) 1 f f d2A4(r) ... 
-T-L= - \ \ -i— f(w-d)U(w-d)da 

dx2 2-KD]}R dx2 

+ryf^_±r ~2irD)}R dx2 

92A,(/-), 
dx2 ' 

dx2 dx2 dx2 ds (Ala) 

d2w(P) 1 f f d2A4(y) , , . . . 
-T

J-= - 1 1 \ - f(w-d)U(w-d)do 
oy 2-KD))R dy 

1 ff d2A4(r) 1 f d2Al(r) 

dy2 ' 

d2A2(r) 
X+ 

9%(r) ^d^Hy 
dy' " ' dy' ' - dy' 

3 2 A 

ds (Alb) 

d2w(P) 1 ff 9zA4(r) 
-—'-= f(w-d)U{w-d)da 

dxdy 2wD5}R dxdy 

dxdy 
| i rr ^ ( r ) i r 

2xDJ JD dxdy 2-Kdr 2xDJ Jj, dxdy 

+ 32A2(r)A , |9
2A3(/-)$ |9

2A4_(/-), i; 

Q 

dxdy dxdy dxdy 
ds (Ale) 
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dV2w(P) 1 [[dAAr) ,.TU ... 
= - \1 — f(w-d)U(w — d)da 

dx 'lirDiL dx 

1 [ f ^ * f r 2xDJ iR dx 

2irJ, 

3A.O-)$ + 3 A ^ 
3x 3* 

cb (Aid) 

dVlw(P) 

1 r r dA2(r) 
+^b\)R~dy~gda 

where 

2TT J c 

~dAdr)^ dA2(r) ' 
—; * + —; * 

dy dy 

a2A, 2 
~^X = -^cos^co-c*) 

a2At 2 
— 2 ~ = - 3 COS(2co - <p) 
dy r 

32A, 1 
- - 3 sin(2co - <p) 

dxdy r 

32A2 1 2 , 
——j- = -7 (sin co - cos co) 
dx r 

32A2 1 , . , 
-~2 = ~2 (COS CO - S i n 0)) 
dy r 

d2A2 sin2co 
dxdy~ r2 

32A3 sin^coscosinco cosy 

dx2 r Ir 

d2A3 sincocoscosinco coscp 
dy2 r 2r 

32A3 sin<pcos2a) 
dxdy~ 2r 

32A4 1 , 1 1 , 
- s ? - = - /« r + - + - c o s « 

32A4 1 , 1 1 . , _ _ = _ / w + _ + _ s m w 

a2A4 1 . 
—-— = - sm2co 
dxdy 4 

6Aj cos(co-<p) 3A! sin(o>-ip) 

dx ~ r2 dy~ r2 

3A2 cos 
dx r 

j> 3A2 sinco 
dy r 

ds (Ale) 

(A2a) 

(Alb) 

(A2c) 

(Aid) 

(Ale) 

(A2f) 

(Alg) 

(Alh) 

(A2i) 

(A2j) 

(Alk) 

(All) 

(Alm,ri) 

(Alo,p) 

in which co = x> is the angle between the x-axis and the vector 
r and <p = r^n is the angle between the vector r and the outward 
normal n (see Fig. 2). 

Elements of the Matrices A, B, C 

(An)/,/-1= " 

M n ) , y = ( « , ) / [ ( * - l ) £ > e , ] 

( ^ i 2 ) v - i = 2(a2),-5/ 

(Ai2)ii= - 2 ( a 2 ) , ( 5 , - 1 + 5 , ) 

(Al2)jj+i=2(a2)iS,-i 

(Al4)ii=~(a2)i/l(v-l)Dei] 

(A2l ),-,,_,= -2032)^ 

(A2l)ii = 2(P2)i(si^l+si) 

( ^ 2 I ) M + I = - 2 0 8 2 ) , - 5 / - I 

(A22)ii=Wi)i/l(v-iyDel]-(P2)iKi/e, 

(A2i)u= - ( & ) / / [ ( " - l)e,] 

? + «5,7 (-431)/;= - w « i 

(^32)0= ] (lnriq+l)dsq 
J 

1 
(^ 3 3)y= - - j ijq(llnriq+\)dun 

(^34)y = TJ rtqlnriqdsq 

(A43)iJ=(Ail),-j 

(A44)ij= (A32)ij 

(As\)ij-=—\dwii + a^iJ 

(Ai2)ij= - — j (lnrlq+\)dsq 

(A5i)u = —\ r}q(2lnr,q+\)dwiq 

(AS4)u= ~T\ r}qlnrlqdsq 

( f l , ) ; = a 3 ( j , ) / [ Z * ? , ( * - l ) ] 

(B2),= 03(Si)/lDe,(v-l)] 

(Bi)i = 4L>\\ rhlnriQSQd°Q 

(-84)/ = — U (/nr,e+l)gQcfCTe 

(^5)/ = — j j rfQlnrIQgQdaQ 

(C4), = -Cm(lnrim+1) 

(Cs)i- - _Cfflrlmlnrlm 

(A3d) 

(A3e) 

(A3y) 

(A3g) 

(A3A) 

(A3/) 

(A3y) 

(A3/t) 

(A3/) 

(A3w) 

(A3«) 

(A3o) 

(A3p) 

(A3?) 

(A3r) 

(A3s) 

1 dKi --, 
(a2),-s,-( - — S,- + 2K,-

+ (a1),-(5,-_i+J/) 

M i l )/,/+! = - (<X2)iSi 

(Si-

da, 

ds 

3 K,-
- S , ) — + 2/c,-

05 

S,-_, + 2K,-

(A3«) 

(A36) 

(A3c) 

(A4c?) 

(A4b) 

(A4c) 

(A4d) 

(A4e) 

(A4f) 

(A4g) 

(A4h) 

where /= 1, 2, ..., N,j= 1, 2, ..., N, I, m= 1, 2, ..., M; s,-_i, 
Si are-the arc lengths between the nodal points / - 1, /, and /, 
/+ 1, respectively; e,= l/[i,,-^15,-(5,-_1 +5,-)]; riP= lpt-P\; P€R; 
riq = I A- - 91»<7€./-element; co,? = is the angle between the x-axis 
and the line r,j (see Fig. 2); (a,,),- and (/3„),- (n = 1, 2, 3) are the 
values of the functions a„(s) and (3„(s), respectively, at the 

nodal point /; the symbol I indicates integration over the j -
v 

element; Cm are the modified weight factors of the Gauss 
integration on the domain R (Katsikadelis, 1990). 
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Modified Mixed Variational 
Principle and the State-Vector 
Equation for Elastic Bodies and 
Shells of Revolution 
A modified mixed variational principle is established for a class of problems with 
one spatial variable as the independent variable. The specific applications are on 
the three-dimensional deformation of elastic bodies and the nonsymmetric defor
mation of shells of revolution. The possibly novel feature is the elimination in the 
variational formulation of the stress components which cannot be prescribed on the 
boundaries. The result is a form exactly analogous to classical mechanics of a dynamic 
system, with the equations of state exactly in the form of the canonical equations 
of Hamilton. With the present approach, the correct scale factors of the field 
variables to make the system self-adjoint are readily identified, and anisotropic 
materials including composites can be handled effectively. The analysis for shells 
of revolution is given with and without the transverse shear deformation considered. 

1 Introduction 
The objective of the present paper is to show that the state-

vector equations can be derived from a modified mixed var
iational principle. By the state vector, we mean a vector whose 
components can be prescribed on the boundary of the one-
dimensional problem. The present analysis is applied to three-
dimensional deformation of elastic bodies and nonsymmetric 
deformation of shells of revolution. The vector equations are 
usually derived from the field equations. It appears that a direct 
variational approach offers less manipulation than the con
ventional method and correct scale factors of the field variables 
to make the system self-adjoint. Furthermore, once a varia
tional principle is established for a set of variables, then the 
equations for other sets of variables are easily obtained. In 
what follows, we briefly review the papers related to the state-
vector formulation. 

In the area of elasticity problems, many investigators have 
used the state-vector formalism. Particularly, problems in an
isotropic materials have been treated with this formalism. One 
advantage of the state-vector formulation is that three stresses 
and three displacements, which are of immediate interest, are 
treated simultaneously as the components of the six-dimen-
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sional state vector. Stroh (1962) and Ingebrigtsen and Tonning 
(1969) utilize the state-vector formalism to study surface waves 
propagating in anisotropic crystals. Recently, Braga and 
Herrmann (1988) also make use of the state-vector form of 
equations to investigate plane waves in anisotropic layered 
composites. In these works, the state-vector equations are de
rived from the field equations. 

The state-vector formulation has also been used in the anal
ysis of shells of revolution. Cohen (1964, 1974, 1979) derives 
the eighth and tenth-order differential equations from the field 
equations which are solved by the field method, a stable nu
merical solution technique. Steele and Skogh (1970) adopt the 
formulation to develop asymptotic solutions. Wunderlich, et 
al. (1989) also utilize the state-vector equation for nonsym
metric deformation of shells of revolution in conjunction with 
the finite element calculation. To derive the state-vector equa
tion, Steele and Balch (1989) employ a modified variational 
principle similar to what will be presented here. Balch and 
Steele (1988) also demonstrate that the vector equation is very 
useful for asymptotic-numeric analysis of nonsymmetric de
formation of general shells of revolution that the state-vector 
equation would be the best form for an efficient asymptotic-
numeric solution procedure. 

In other fields such as optimal control, the state-vector for
malism has also been used (see, e.g., DeRusso, Roy, and Close, 
1965). Unlike in the control theory, however, the derivation 
of the state-vector equation from the usual field equations is 
not a simple task in some areas of solid mechanics such as 
shells. Since the usual field equations in shells involve variables 
that cannot be prescribed on the boundary, the elimination of 
these variables is mandatory to obtain the state-vector equa
tion. 

Journal of Applied Mechanics SEPTEMBER 1992, Vol. 59 / 587 

Copyright © 1992 by ASME
Downloaded 03 May 2010 to 171.66.16.21. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The present variational formulation is developed for the 
three-dimensional elastic bodies first and then for the shells 
of revolution. In each part, a modified mixed variational prin
ciple is established from the Hellinger-Reissner mixed varia
tional principle, and the derivation of the state-vector equations 
follows. The crucial step in the analysis is the elimination of 
the stress components which cannot be prescribed on the 
boundaries. The results are given in complex form for elastic 
bodies and in real form for shells of revolution. 

For the elastic bodies, the results are obtained with an as
sumption that the Fourier transformed solutions are possible 
in two spatial coordinates. The field variables in the state-
vector equation consist of three displacement and three traction 
quantities. Due to the assumption, there exists a potential and 
the corresponding differential equations are self-adjoint. How
ever, it is observed that the derived equations also hold even 
when a potential function is not possible. The state-vector 
equations are presented in both the Cartesian and cylindrical 
coordinate systems. 

For the shells of revolution, nonsymmetric deformation is 
expressed in a Fourier series in the circumferential direction. 
The variables associated with the transverse shear deformation 
are included in the ten field variables. The Sanders stress re
sultants and strains are employed to obtain consistent results. 
As a special case, the eighth-order state-vector equation based 
on the Love-Kirchhoff kinematic assumption is also worked 
out. 

The present analysis is carried out within the framework of 
the linear theory. Varying material and geometric properties 
along the independent spatial variable are allowed, and aniso
tropic layered materials can be handled. 

We remark that the state-vector equations which are the 
Euler-Lagrange equations of the present variational problems 
have exactly the analogous form to the canonical equations of 
Hamilton for a dynamic system. The difference is that the 
independent variable of the present problems is the space vari
able instead of time. Consequently, the problems considered 
in the paper including vibration problems in the frequency 
domain are all two-point boundary value problems. Thin shells, 
in particular, are stiff systems which require very fine mesh 
when the finite element method is used. The only successful 
forward integration technique appears to be the field method 
(see, e.g., Cohen, 1964). The asymptotic method is a powerful 
tool to handle efficiently this kind of problems (see, e.g., Steele 
1965; Steele and Skogh, 1970). 

2 Three-Dimensional Elastic Bodies 
The Hellinger-Reissner mixed variational principle for three-

dimensional elastic bodies can be stated as (Hellinger, 1914; 
Reissner, 1950) 

<5n = <5 \\lL«dV+\l RdS} = 0 (1) 

where V is the volume of the body and S is the surface sur
rounding the body. The potential of the surface traction is 
denoted by R, and Reissner's energy density LR is 

LR = FfD, + F!D2 - jDftfF, - JDftfF2 - DrP (2) 

where - D r P represents the potential due to the external load. 
The superscript T\n Eq. (2) denotes transposition. For bodies 
in which the Cartesian coordinate system is appropriate, we 
define 

F ,= &a,b) 

F,= (4a,b) 

and 

(5) 

where stress and strain are denoted by a and e, and the dis
placement and body force are designated by u and p, respec
tively. The subscripts in (3)-(5) follow the usual definition 
(Timoshenko and Goodier, 1970). 

For later use, we also define a vector F that can be prescribed 
at the x = constant surface: 

(6) 

In the Cartesian coordinate system, F = Fi. 
The vector form of the constitutive relations for linear elastic 

anisotropic behavior can be given in terms of the symmetric 
matrix T: 

r21 
r,2 
T22 

(7) 

where 
rii = r u ; r12= 

The partial inversion of the relation (7) leads to 

= r2i; r22-r22. 

* 2 1 

* 1 2 

* 2 2 
(8) 

where 

(9a) 

(9b) 

(9c) 
* 1 2 = 

$22=$22=r22—r2irn r12. 
The matrices T and * are given in Appendix A for isotropic 
materials. 

First, we express LR explicitly only in terms of D h D2, and 
F, through the modified constitutive relations (8). Performing 
the integration in (2) then yields 

i « = Fr(D1 + #2
r
1D2) + ^D 2

r<i. 2 2D 2- iFr* 1 1F 1-D 7 'P . (10) 

For the purpose of deriving a modified mixed variational 
principle that will lead to the state-vector equation, we consider 
the deformation that can be expressed as 

H(x,y,z) = RelH(x)exp[i(kyy + kzz)]} (11) 

where H stands for any vector defined in (3)-(6). In Eq. (11), 
H(x) may be regarded as the Fourier transformed variables 
or the Fourier series coefficients of H(x, y, z), and ky and kz 

are assumed to be real valued. Using Eq. (11) and integrating 
over y and z, Eqs. (l)-(2) can be recast into the following form 

Sn„ = 5}Rel (LR + S)dxl=0 

where 

1 
LR = ¥t (D, + *2'1D2) + - D 2 *2 2D2 

1 #T 

- - F , #„F n r i - D i 7 P , (12) 
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and S is the potential of the edge traction. In Eq. (12), (•)* 
represents the complex conjugate_of (•)• 

To relate [Di(^), D2(x)] and D(x) , we use the kinematic 
relation. (Timoshenko and Goodier, 1970): 

_ dB 
D,= — + G2D 

dx 

D2 = G3D. 

The elements of the matrices G2, and G3 are 

(13a) 

(136) 

0 
iky 
ikz 

0 
0 
0 

0 
0 
0 

ikv 

0 
ik7 

0 
0 
0 

0 
ikK 

ik 
G,= 

The relation between ¥i(x) and V(x) is simply 

F , ( x ) = F ( * ) . (14) 

By substituting (13) and (14), we finally obtain the following 
modified form of the mixed variational principle: 

sn* 
fx2 

5 Re I (LMR + S)dx 

fx2 
\ s \ (LMR + Ll,R + S + S*)dx = 0. 
1 Jx1 

(15) 

The modified energy density LMR in (15) can be written in a 
compact form 

- -*TM n 
LMR = V —- + D 

dx 

in which 

D* 

E* 

C 

K 

B 

r E F -

r = G 2 

= C7 

=r 

2 2 

+ *2riG3 

= *n 

= G3 *22G3 

—* 
D rKD D* 

rv 

(16a) 

(166) 

(16c) 

(\6d) 

Note that C is a real symmetric matrix and that K is a Hermitian 
matrix. The matrices C, E, and K for isotropic materials are 
explicitly given in Appendix A. _ 

Considering the variations of the force vector F* and the 
displacement vector D*, the Euler-Lagrange equations of the 
variational problem are obtained: 

— —* 
d(LMR + LMR) 

d¥ 

d ld(LMR + LMR)\ 

dx 

dY) —*T— — 
— + E D - C F = 
dx 

0 

diy 
dx 

S{LMR + LMR) 

3D* 

- — + EF + K D - B = 
dx 

0. 

The two equations can be put together as 

d\F 
dx D M 

(17) 

where 

M=-rr. 
The present result (17) agrees with that derived by Braga and 
Herrmann (1988). It is noted that the coefficient matrix is 
associated wtih the fundamental elasticity tensor (Chadwick 
and Smith, 1977). 

Thus far, the modified mixed variational principle and the 
state-vector equation are derived in the Cartesian coordinate 
system. In the subsequent derivation, we apply the same pro
cedure used for the Cartesian coordinate system to bodies for 
which the cylindrical coordinates are suitable. In this case, we 
define 

(18o,6) 

and 

(19a,b) 

(20) 

The definition of F is 

F = rF,. (21) 

As in the Cartesian coordinate system, we consider the de
formation that can be expressed as 

H(/-,0,z)=Re[H(/-)exp[/(K^ + ^ ) ] J (22) 

where H stands for any vector defined in (18)-(21). Following 
the same procedure for the Cartesian coordinate system, we 
obtain the same form of the state-vector Eq. (17) with x re
placed by r. The definition of the matrices in Eq. (17) must 
be replaced with 

E 

C 

K 

B 

= G2 + 4>2iG3 

T 1 =cr=-*„ 
r 

= K* r =rG 3
r * 2 2 G 3 

= rP, 

(23a) 

(236) 

(23c) 

(23d) 

where G2 and G3 are given by (Timoshenko and Goodier, 1970) 

"0 0 0" 

ii<e 1 
G2 = 

JK 

0 
r 

0 0 

G3 = 

0 I «9 
r r 

0 0 ikz 

he 
r 

0 ik, 

The matrices C, E, and K for isotropic materials are explicitly 
given in Appendix A. 

3 Shells of Revolution 
Figure 1 shows the coordinate system in an element of a 

shell of revolution. The meridional, circumferential, and nor
mal displacements are denoted by us, ue, and un, and the mer
idional and circumferential rotation angles of the normal to 
the middle surface are denoted by x« and xe- The angle <p 
between the normal to the meridian and the z-axis is given by 

<p = tan" 
dz 
dr 
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Fig. 1 The element of a shell of revolution and the coordinate system. 
The meridional, circumferential, and normal displacements, us, u„, u„ 
and the meridional and circumferential rotation angles, \s, x» a r e a l s 0 

shown. 

Fig. 2 Force and moment resultants acting on a shell element 

The force and moment resultants and their directions of po
sitive action are shown in Fig. 2. It is sometimes convenient 
to use the variables based on the r, 6, and ̂ -coordinate system. 
The relations between (ur, uz, Nr, Nz) and (us, u,„ Ns, Qs) are 
provided by 

ur = WjCOS ip + WjSin tp 

uz = ussm <p — u„cos tp 

Nr = Nscos tp + Qssin tp 

Nz = Nssin tp-Qscos tp. 

The mixed variational principle for shells of revolution can 
be stated as 

511 = 5 LRds + R rdd\ = 0 

where R is the potential of the edge load. The energy density 
LR is expressed as 

LR = FfD, + FfD2 - \ DftfF, - f D2
r^F2 - D r P + ]- DrJCD (24) 

with 

M„\ 
MJ 

a 
NA 
NJ 

;D ,= 

( «s 

2KS0 

\xs-P 
es 

V 2esg 

,M9 I K6 

F2= j a ;D2= \xa-fo 

(25a,b) 

(26a,b) 

and 

0 
0 

V=\pr 

Pz 
^.PDJ 

; D = 

<Xs 

\Xe 

<UZ 

(27) 

In (25), we defined Aap = (Aal3 + Apa)/2, and it is assumed 
that Ms6 = Mds. The modified curvature term KSB and the shear 
stress resultant Ns0 introduced by Sanders (1959) (see also 

Koiter, 1960; Budiansky and Sanders, 1963; Naghdi, 1972) are 
defined as 

^ o = 2 [(Kse + K-es) - fese ~ ees)] 

Nso = ̂ l(Nse + Ngs) + ^Mse-

= 2 (.Na + Ne,) 

Mes)\ 

with 

f= -
1 ' 2 \ r , 

in which the principal radii of curvature, rt and r2, are rx = 
ds/dtp, and r2 = r/sin tp, respectively. The terms DT3CD and 
- D r P in (24) represent the potentials due to the elastic foun
dation stiffness 3C, and the external load, respectively. 

As for the three-dimensional bodies, LR for shells of revo
lution can be written only in terms of Di, D2, and Fj. The 
result is2 

JLR = Fr(D 1 + *2
r
1D2) + ̂  D 2

r* 2 2D 2-^ FfauF, . 

D r P + Dr3CD. 
(28) 

The task is now to write the energy density LR only in terms 
of the quantities that can be prescribed at the edges, namely 
the displacement vector D and the force vector F that is defined 
as 

frM, 
rMs0 J 

F = rNr 

rNz 

\rNse; 

To find the relations between F, and F and between D1; D2 

and D, consider a deformation with the following explicit 
circumferential dependence: 

'Mi'"cos nti) 
Mj^sin nd , 

i(M)cos nd 
N(

s
n)cos nd ' 

and 

Af^'cos nd; 
Q^'sin nd 
NJ)n)cos nd 

frM^cos nd' 
/•Af^'sin nd 
rNl

r
n) cos nd 

rN<n) cos nd 
lr/Vi;'sin nd 

KJB)COS nd 

2i<j;)sin nd 
; D , = {(xi" )- /3i ' , ))cos. 

ejn,cos nd 
26^'sin nd 

4'°cos nd 
(X{e")-tin))smnd\ 

(29a,b) 

; D 2 (i0a,b) 
A") cos nd 

(31) 

in which the superscripted quantities with (n) are the Fourier 
coefficients of the «th circumferential harmonic. 

The constitutive equations for shells of revolution are of the same form as 
(7) and (8), although the definition of D b etc., is different. For shells made of 
homogeneous materials, n and * are listed in Appendix B. 
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The Sanders kinematic relations, which yield zero strains 
for rigid body motions (Sanders, 1959), are employed to ex
press Di and D2 in terms of D (see, e.g., Steele, 1971; Naghdi, 
1972): 

D{B) = G, 
dD («) 

ds 
(32a) 

DJ") = GJn)D(") 
(32b) 

where Df ' , D^"' and D ( n ) are the Fourier coefficients in Eqs. 
(29b), (30b), and (31c). The elements of the matrices G,, Gln) 

(33a) 

and Gj"1 are 

G,= 

cr= 

0 

n 
=F- -

r 

1 0 

0 

G]"» = 

r 

0 

0 

1 
0 
0 
0 

.0 

0 

r 

0 
0 

0 

± 

0 
1 
0 
0 
0 

0 
0 

sv 

0 

0 

r 

0 

n 

r 

1 

0 

0 

r 

0 

ns„ 

r 

1 

r 

0 0 

o - r 
-cv 0 
sv 0 
0 1 . 

0 

r 

0 
0 

r 

0 

r 

0 

0 

r 

0 
0 

r 

0 

r 

n 
± -

(336) 

(33c) 

with 

5^ = sin ip; c(0 = cos <p. 

The upper sign of ( ± , =F j in (33) corresponds to the defor
mation of (29)-(31) whereas the lower sign corresponds to the 
deformation of (29)-(31) with cosines and sines interchanged. 
The relation between Fi and F is 

r¥\n) = (Gfyl¥M. (34) 

Note that Gf1 can be obtained just by changing the sign of 
the off-diagonal elements of Gj. 

By substituting (32) and (34) into (28) and integrating over 
8, we obtain the following modified form of the mixed vari
ational principle: 

8n{n) = 8\\2L^ds+Rw)=0 (35) 

where R{n) is the potential of the edge load for the nth cir
cumferential harmonic. The modified energy density LMR in 
(35), which is expressed only in terms of F ( n ) and D ( n ) , can be 
written in a compact form 

• (n ) i?(n)T " " 
-MR-

ds 
. + J)(")Tjj;(")p(n)_ I pln^OF'") 

2 

in which 

+ -D ( f l>7k f" ,D (" )-
2 

( » ) ' l l ( n ) D w B 

E(n) =Gr l[Gin>+#j;Gi")] 

c=cr=-Gr1*„(Gry 
r 

K(«) =K(")T=r[GJ")r#22GJ") + 3C] 

(36) 

(37a) 

(376) 

(37c) 

B ( = rP <") (37c?) 
The symmetric matrices C and K("' have dimensions of "com
pliance" and "stiffness," respectively. 

Considering the variations of the force vector F (" ' and the 
displacement vector D'"1, the Euler-Lagrange equations of the 
variational problem are obtained: 

dL%R <mw 

3F <«) ' 
(n)'m(n) 

ds 
+ E1"' D CF ( « ) _ 0 (38) 

' ds\ 

ar («) \ a ; («) dF («) 
tfD («)' 

rfs 

<?D ( « ) • cfe 

+ E < " ) F < n ) + K ( " ) D ( " ) - B ( ' " = 0 . (39) 

The two equations can be put together as 

d(F ("> E(«) 

C 
K (n) 

E ( « ) ' D(») 
B(">^ 

0 ' 
(40) 

The matrices C, E ( n ) , and K(n> for isotropic materials are 
explicitly given in Appendix B. 

For the axisymmetric deformation (« = 0), Eq. (40) produces 
two sets of equations, one for torsionless axisymmetric de
formation, and the other for torsional deformation. The mat
rices E<0), K(0), and C for the torsionless axisymmetric 
deformation, which are the same matrices obtained by Steele 
and Balch (1989), have the form for a shell with isotropic 
behavior: 

?(0). vcv rsv 

0 vc* 

K(0) = - 12 

0 

0 

1 

Etr o M4+(1-^)4 

(41a) 

(416) 

(41c) 

with the definition 

(rM0) ; D ' (0). 

The vector representing the applied load in (40) must be re
placed as 

rB«»i rB<o), 
[oj^G""1 

where 

>(0)_ 
rNfc, 

hrf»-rN?>sJ 
;G ( 0 ) = \-vL 

Et 

0 

— Nmc s 
1 V £ C^jjy, 

The equation for A .̂0), which corresponds to the vertical equi
librium, is 

rf(rNf) 
ds 
.(0). 

= rpf. 

The vertical displacement u\' can be found from 

¥ ^ * , . * /*4+(i-"2)4 
cb £? £r 

A^ 
(0) 

+ C^X: . (<>). W, 
* «?». 

The vector equation for the torsional motion of an isotropic 
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shell is of the form (40) with n = 0 in which F<0) and D(C) are 
defined as 

F(o,_W.D(o, U0" 
F ~ UN® * D " < ~ ' m 

The corresponding matrices are 

E1 ( 0 ) _ 

K ( C ) = -
tir 

-cv 0 

- 2fcp - cv 

r1 -rsp 

2(1 + v) 

Etr 

12 , " 

7 +r2 r 

The load vector B ( ' is simply 

B(0) = 

r 

/•pf 

i 

(42a) 

(426) 

(42c) 

The uncoupling between the membrane and bending be
havior for axisymmetric deformations of a plate (f -* 0, 
<p — 0) can be easily observed from Eqs. (40)-(42). 

4 Love-Kirchoff Theory in Shells of Revolution 

When the Love-Kirchhoff kinematics is imposed such that 

some modifications become necessary due to the reduced num
ber of independent variables. In this case, the edge work aW 
at s = constant can be written as 

8W=YT8D 

where the column vectors F and D are redefined as 

)r(Ns6 + Mse/r2)[ 
F = ( ^ ) , D = 

rN, 

Xs 

" e l 

\."z. 

We note the relation 

Nse + Ms6/r2 = Nse + pMse 

with 

We also redefine the energy density LR as 

^ - F [ D , + F 2
r D 2 - JDfrfFi- JD2

rF2 

-HTY> + -BrKB + Qs(Xs-Ps), (43) 

with the definition 

F i= {Nrf + pMsgl ; D,= hse + Kse/p\ 
Ns ) ( es 

Me J _ ( Ke 
^2= {Mse-Nse/p\ ; D 2= hse-pesgj 

Ne e6 

The effective shear resultant Qs, which can be interpreted as 
the Lagrange multiplier in (43), is defined as 

r ad 

Using the constitutive equation 

'Ms 

Mse | 
Ns 

Nsg 

Me 

.Ne 

r 
6 x 6 

( Ks 

2KS0 , 

2<=sfl | 

*« 
U s 

and the relations 

= [T]( 

where 

' M A 
M J 

Nse\ 
Me 

NeJ 

1 0 

0 P 
0 0 
0 0 

'i 

0 
0 
1 
0 

D2 } -

0 
1 
0 
0 

[(T-

0 
0 
0 
1 

Y 

0 
0 
0 
0 

/ «s 

\2KS0 

1 2ei9 

j Ke 

\ ee . 

0 1 0 - 1 / p 0 0 
0 0 0 0 0 1 

we can relate (F,, F2) and (D^ D2): 

= [ T r T / ] j ^ 

r21 

£12 

r22 

(44) 

The partial inversion of (44) results in the same form as (8) 
and (9) with all the quantities barred. 

Adopting the same procedure used for (10), we obtain 

Z* = Ff(D, +*lD2) + ^ D 2
r ¥ 2 2 D 2 - ^ F f f n F , 

- D r P + Q s ( X j - & ) . 

If we redefine some variables as 

(45) 

F,= D, 
x,-ft 

D = D, 

* n = 

0 
[_ 

# 1 1 

0 0 

0 
0 
0 
0 

#21 = ~ * 1 2 = 

0 
#21 0 

0 
; # 2 2 = # 2 2 , 

the energy density LR in (45) can be cast into exactly the same 
form as (10). 

To relate D[ and D2 to D, we use one of the kinematic 
assumption, xe = fie in the strain-displacement relation. The 
results are3 written as (32) with 

'Similar circumferential dependences to (29)-(31) are assumed. 

592 / Vol . 59, SEPTEMBER 1992 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.21. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



G,= 

1 0 0 
0 1 0 
0 0 c„ 
0 0 ^ 

0 
0 

n 

rp r 

0 
0 

pr 

0 

0 

n 

r 

r 

0 

1 
r 

r 

0 

Furthermore, the relation between Fi and F can be shown to 
be 

rF1
(") = (Gr ' ) 7 F ( " ) . 

Following the same procedure used in the previous section, 
we obtain exactly the same form of equations as before—Eq. 
(36) through Eq. (40). 

5 Observations 

First, we note that due to the relation between M and E, 
and the Hermitian property of C and K, the differential op
erator £ defined below is self-adjoint: 

£ M = J | -^+Ari (46) 

where A is the coefficient matrix of Eq. (17). In (46), we 
introduced J and t\ such that 

J = 
0 

To prove the self-adjointness of £[ij\, it should suffice to show 
that (see, e.g., Ince, 1956) 

vlT£[va] = (v*a
T£[Vb])*T-£ lfl%-B*b

TVa) (47) 

where t\a and r\b are the solutions of £[ij] = 0. From Eq. (47) 
(and with £[ija] = £[>/(,] = 0), the reciprocal theorem (see, 
e.g., Love, 1927) immediately comes out: 

d —*T— —*T~ 
~[¥b D a - D 6 F„] = 0 
ax 

WlTT>a-K
T*a\X

X\ = Q. 

The same form applies to shells of revolution. 
For the three-dimensional deformation of elastic bodies, the 

variational principle was derived by restricting ky, kz, and KS' 
in (11) and (22) to be real valued. If we had assumed that ky, 
kz, and K9 are complex valued, however, no modified varia
tional principle like (15) would have been possible; the me
chanical systems have no potential. Nevertheless^^, kz,_and 
Kg can be generalized to be complex-valued in E, K, and M of 
the final form of_the state-vector Eq. (17). With this gener
alization, M ^ - E* , and K is no longer a Hermitian matrix. 

Interestingly enough, the present result is exactly analogous 

to the Hamiltonian mechanics for a dynamic system. To see 
the analogy, we reconsider the case for shells of revolution. 
The Hamiltonian / / ' " ' corresponding the functional II '" ' can 
be found as (see, e.g., Goldstein, 1980 or Gelfand and Fomin, 
1963) 

HM(s,D("»,F<">) = - L W R ( S , D l n ) , d B < " > / * ) + F<">' ^ ± _ 
ds 

- _ D ( " ) 7 E ( " ) F ( " ) + - F (" , 7CF (" ) 

2 

- - D (")7K (">D<n) + D (" )7B<n) 

2 

(48) 

In Eq. (48), the components of the force vector F ( n ) are in
terpreted as the conjugate momenta: 

F<"' = 
„) aL^(s,D (" ' , tfD""Afc) 

ds 

It is now apparent that the system (40) represents the canonical 
equations of Hamilton, which are 

dDU.) dHw 

ds dF (n) 

d~F («) dH («) 

ds 3D («) 

The arc-length variables, the displacement D1"', and the force 
F ( n ) are analogous to the time, the generalized coordinates and 
momenta of a dynamic system. It is well known that i / ( n ) is 
a first integral of the Euler-Lagrange equations if / / ' " ' does 
not depend on s explicitly. In the present shell problem, this 
is true if a cylindrical shell with a constant thickness made of 
a homogeneous material is subjected to pressure or edge load
ing. A similar result can be obtained for the three-dimensional 
bodies. 

It is remarked that the proper scale factor of the field vari
ables is crucial for £ to be self-adjoint. In the present problem, 
D and F satisfy a criterion that F^SD has the dimension of 
work. As long as this criterion is satisfied, the resulting £ is 
always self-adjoint. 

To generalize the choice of the field variables, suppose that 
we wish to use new variables D„ and F„ defined as 

R = RF ; Dg = R r D, 

where R is any real nonsingular square matrix. Note the relation 

F7SD = FJTSDr 

By substitution, we can easily show that the state-vector equa
tion becomes for the three-dimensional bodies 

^ > + 
dxlD 

RER + — R 
dx 

R ' CR - l 

RKR r 

K E R ' + ^ R 

X < D ? = 
RB 
0 

(49) 

Exactly the same form applies to the shell of revolution. 
For wave propagation or steady-state vibration of the elastic 

bodies where the deformation has the form (in the Cartesian 
coordinate system) 

H(x,y,z,t) =Re{H(x)exp[i(kyy + kzz-ut)]}, (50) 

we replace K of (16c) as 

K^K-poi2l. (51) 
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In Eqs. (50 and (51), / and w are time and frequency and p is 
the density of the body. When the cylindrical system is used, 
replace K of (23c) as 

K<=K-rpo2 l , 

with H similar to (50). The extension to dynamic problems is 
also valid for the shells of revolution. In addition, we note 
that the present variational principle (not just the final state-
vector equations) can be extended to include linear viscoelastic 
theory as long as we use real form solutions such as (29)-(31) 
(not the complex form such as (11, 22)). 

As pointed out in the Introduction, the state-vector differ
ential equations have been and may be useful for asymptotic-
numeric treatment. As far as the direct use of the principle is 
concerned, a finite element formulation may be pursued di
rectly from the present variational principle. A hybrid per-
turbation-Galerkin method (Gear and Anderson, 1989) may 
also be applied to the present variational problem to seek for 
asymptotic-numeric solutions. 
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where X and G are the Lame constant and shear modulus, 
respectively. 

In the cylindrical coordinate system, 
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A P P E N D I X B where E is Young's modulus, v is Poisson's ratio, / is the 
For isotropic materials, the constitutive matrix T is given by thickness of the shell, and the "reduced thickness" c is defined 
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(Bl) The shear flexibility factor /x is given by (Reissner, 1945) 

12(1+*<) 
tL = . 

Mindlin (1951) also derived a shear flexibility factor close to 
Reissner's. 

The explicit forms of the matrices E '" ' , C, and K(fl' for 
isotropic materials are 
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where the upper sign of [ ± , =F ) in (B4)-(B6) corresponds to 
the deformation of (29)-(31) whereas the lower sign corre
sponds to the deformation of (29)-(31) with cosines and sines 
interchanged. 
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Scattering of an Impact Wave by a 
Crack in a Composite Plate 
The surface responses due to impact load on an infinite uniaxial graphite/epoxy 
plate containing a horizontal crack is investigated both in time and frequency domain 
by using a hybrid method combining the finite element discretization of the near-
field with boundary integral representation of the field outside a contour completely 
enclosing the crack. This combined method leads to a set of linear unsymmetric 
complex matrix equations, which are solved to obtain the response in the frequency 
domain by biconjugate gradient method. The time-domain response is then obtained 
by using an FFT. In order to capture the time-domain characteristics accurately, 
high-order finite elements have been used. Also, both the six-node singular elements 
and eight-node transition elements are used around the crack tips to model the crack-
tip singularity. From the numerical results for surface responses it seems possible 
to clearly identify both the depth and length of this crack. 

Introduction 
Ultrasonic waves provide an efficient means of character

izing defects in structures. For this purpose it is necessary to 
analyze scattering by such defects. However, scattering by 
crack-like defects in a plate-like structure is a complicated 
phenomenon and the problem is made more difficult if it is a 
composite plate. In recent years, considerable progress has 
been made toward understanding wave propagation in aniso
tropic composite plates (Datta, et al., 1988a,b; Mai, 1988; 
Nayfeh and Chimenti, 1989; Rokhlin et al., 1986). But not 
much work has been done on the scattering by cracks in a 
composite plate. Recently, Karim and Kundu (1988) and Karim 
et al. (1989) studied scattering of elastic waves in a layered 
half-space and in layered fiber-reinforced composite plates by 
interface cracks using a boundary integral formulation. They 
considered antiplane motions, and the method used by these 
authors is limited to planar defects. Recently, both Sanchez-
Sesma (1987) and Bond (1990) reviewed various applicable 
numerical techniques for a wave scattering problem'. Both au
thors recommended that the family of boundary methods are 
well suited for scattering by various defects. This is not only 
because the investigated regions that can be studied by these 
methods include both near and far fields and arbitrarily shaped 
scatterers, but they also are good for mid-frequency ranges 
(when the flaw size is of the same order as the wavelength). 

In this study we have used a hybrid method from the family 
of boundary methods that have been used in recent years for 
time-domain calculations of elastic waves scattered by a hor
izontal crack in a transversely isotropic plate. In the past, this 
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method has been successfully applied to homogeneous or lay
ered isotropic half-space for frequency domain calculations 
(e.g., Shah et al., 1982; Franssens and Lagasse, 1984; Khair 
et al., 1989; Bouden et al., 1990; Liu et al., 1989). This nu
merical technique allows one to limit the size of the finite 
element mesh roughly to that of the cross-section of the scat-
terer. There is another advantage of this hybrid method over 
various boundary element methods. It is that this method cou
ples the boundary integral over a surface independent of the 
scatterer surfaces. Thus, one can use the same Green's func
tions for different scatterer geometries and multiple scatterers 
by proper modifications of the interior finite element mesh. 
Since the evaluation of the Green's functions is the most time-
consuming part in the boundary methods, this uncoupling of 
the boundary integral representation from the scatterer bound
ary is a major advantage. In this paper we have also made use 
of an efficient quadrature scheme (Xu and Mai, 1985, 1987) 
for the Green's function computations. 

The hybrid method leads to a complex matrix equation, 
where the matrix is sparse and unsymmetric. The unsymmetric 
complex part arises from the coupling with the Green's func
tion boundary integral representation. The choice of an eco
nomic method to solve these equations involves minimization 
of some function of both computation time and required stor
age. Direct methods usually lead to a lot of fill-ins which 
destroy the sparsity of the matrix and increase the storage 
needs. In general, one has to reorder the rows and columns 
of the matrix to reduce fill-ins. At present, there exists no 
simple and practical algorithms which produce minimum fill-
ins. Here, we use a compacted data structure (Nour-Omid and 
Taylor, 1984) to store only nonzero terms of the sparse matrix 
in a column list scheme. This reduces the storage needs a great 
deal and can be used directly for iterative solution techniques. 
In general, the conjugate gradient method is an effective so
lution technique for large and sparse systems when the matrix 
is Hermitian and positive definite. However, the case when 
the matrix is unsymmetric is substantially more difficult to 
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Fig. 1 Configuration of a composite plate 

solve efficiently by means of iterative methods. This difficulty 
has led to the development of a wide variety of generalized 
conjugate gradient methods with varying degrees of success 
(e.g., Saad and Schultz, 1985; Ashby et al., 1988; Joubert and 
Manteuffel, 1990). Recently, the biconjugate gradient or Lan-
czos method (Lanczos, 1950; Fletcher, 1976; Saad, 1982), which 
is one of the most effective methods so far (Langtangen and 
Tveito, 1988), has been used to solve large unsymmetric equa
tions. 

For the scattering problems considered here it has been found 
that by taking advantage of the sparsity of the matrix, the 
biconjugate gradient method provides satisfactory solutions 
for large unsymmetric complex matrix equations. 

Formulation of the Problem 

Figure 1 shows the geometry of a horizontal crack in a 
composite plate. As shown, this defect lies inside a fictitious 
contour (rectangular) C. We define the interior region R/ to 
be bounded outside by the imaginary boundary B. Note that 
B encloses C. The exterior region RB is bounded inside by the 
contour C. The area between the contour C and boundary B 
is shared by both regions. The interior region R/ is discretized 
with finite elements and an integral representation over C for 
the displacements on the boundary B is introduced to solve 
for the scattered field. 

Considering the plane-strain case, let u, be the displacement 
component in the /th direction in the Cartesian frame and a,j 
the second-order Cauchy stress tensor (/', j = 1, 3) having 
time-harmonic behavior of the form e~mt, where <n is the cir
cular frequency. In each region, u, and a,j satisfy the equation 
of motion 

<rijj + pw2ui=-fi (/',./'= 1,3) (1) 

where p is the mass density, /,• the force per unit volume, and 
the factor e~"*' has been dropped. The continuity of traction 
and displacement at the interfaces must be satisfied. 

Exterior Region RE: Boundary Integral Representa
tion. In this region the displacement uj is composed of two 
parts: 

Ui^up + up (2) 

where wf' is the free-field displacement (including the incident 
waves and their reflections) and ujs) the scattered field. The 
scattered displacement field is represented by a surface integral 
as will be discussed. 

In order to derive the boundary integral representation on 
B, we start from Betti's reciprocity theorem. A pair of solu
tions to Eq. (1) satisfies 

(f.\-g.u)dA = §> ( u . s - v t ) d C 
i «J r 

(3) 

Here, u, t represent the displacement and surface traction 
caused by body force f, while v, s are the displacement and 
surface traction due to body force g in region R£. The scattered 

field is taken to be the first field. The second field is the Green's 
solution. The scattered field has no sources inside R£, hence 
f = 0. For the Green's displacement field, the source is rep
resented by 

g = 8(x-x')8(z-z')e-'i"'ei 

where t; is the unit vector in the /th direction. This represents 
a line source at (x', z) varying in time with circular frequency 
co. Therefore, the Green's function and the scattered fields are 
the solutions of the following equations: 

•'ijk.k + Pw2Gu=-5u8(x-x')&(z-z') 

and 
ff^W") =0, 

(4) 

(5) 
respectively. In the above equations, j stands for the displace
ment direction and / stands for the force direction. G,j and 
ZiJk are the Green's displacement tensor and the corresponding 
stresses. Omitting some of the details, it is easily shown that 

",-(*'>*') = <f (ufiuk-GijOj^n/cdC+u^(x',z'). (6) 

Equation (6) is the integral representation of the total field at 
any point in the exterior region RB. 

Interior Region Rr: Finite Element Technique. This re
gion encloses all the inhomogeneities. In order to get the so
lution in region R7, we use the finite element technique. In this 
approach, the area of interest R/is discretized into N elements. 
In each element the displacement is written in the usual way 
in terms of the shape functions and the nodal displacements 
in the matrix form as the following: 

</>, 0 

0 0i 
4>« 0 
0 4>„ 

«i 

i w i 

u„ 
(7) 

= * d e 

in which n is the number of nodes per element and subscript 
(e) is the element identifier. The strain within an element 
related to the nodal displacement de is given by 

e = Due 

= D*de (8) 
= Bde 

where D is an operator matrix 

D = 

r ̂  
dx 

1) 

d 
.dz 

" 
(I 

3 

dz 
d 
dx. 

(9) 

In order to determine the elemental impedance matrix, let us 
consider the energy function Ee in frequency domain 

Ee = Up + KP 

_1_ 
~2 \W 

Wp 

re-poi u Tu)dxdz 

•| j(u7tB+t7uBwc (io) 

where Ue and Ke are the corresponding strain and kinetic ener
gies, We is the surface traction work potential and tB, uB rep-
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resent, respectively, the traction force and the displacement at 
the boundary B, and '*' represents complex conjugate, a and 
e are stress and strain column vectors, respectively, defined as 

o=[axX°zz°vc]T (Hff) 

f=[e«e«ejr- (116) 

The stress a is related to the strain t 

o = Ct (12) 

where C is a 3 x 3 symmetric matrix of the element material 
elastic constants. Substituting Eqs. (7), (8), and (12) into Eq. 
(10) and taking the variation with respect to u* leads to the 
equation of motion for region R/( which can be written as 

Sfifi 

S// 
(13) 

where the elemental impedance matrices Sy are represented by 

S c = U ( B f C B e - pa>2$J<i>e)dxdz. (14) 

It is clear from Eq. (14) that Se is a symmetric matrix. In Eq. 
(13), d7 and dB represent the interior and boundary nodal dis
placements, respectively. yB represents the interaction forces 
between regions Re and R/ at the boundary nodes. Since there 
are no forces on the interior nodes, y7 = 0, and Eq. (13) 
becomes 

$BB SBI 

S/7 
(15) 

Using the constitutive relation to express ajk and Eq. (7) to 
represent the displacement, and evaluating the integrals at all 
the nodes NB on the boundary B, Eq. (6) becomes 

100. 

+ 

i> (*fS-GCB/)ndC d, 

GCB s)ndC (16) 

where B/ D*/, BB = D$B . Equation (16) can be written as 

dB = dtf) + ABId!+ABBdB (17) 

where ABI is 1NB x 2Nj and ABB is 2NB x 2NB complex 
matrices. Combining Eq. (17) and the second of Eq. (15), we 
obtain 

- A B / 

S// 
(18) 

The total field solutions at a certain frequency can be obtained 
by solving Eq. (18). Note that the square matrix on the left-
hand side of Eq. (18) is usually quite large, sparse, and un-
symmetric. 

Numerical Solution Scheme 

Evaluation of Green's Functions. The Green's functions 
for a given medium in frequency domain can be expressed in 
the form of an infinite integral with respect to the horizontal 
wave number {k) 

r F(k,z,z')eik(x~ :l)dk. (19) 

The computational effort required to accomplish this to a high 
degree of accuracy is usually quite large. In order to reduce 
the time of computation of the Green's functions, we adopt 
an efficient quadrature scheme (Xu and Mai, 1985, 1987) in 
which the kernels F{k, z, z') of the wave number integrals 
are represented by means of Chebyshev polynomials in finite 

and semi-infinite panels, and resulting oscillatory integrals are 
evaluated analytically. To do this, Eq. (19) is written as 

/ = ( CF(x,z,z')eiHx-x,)dk+ \ F(x,z,z')eiHx:x,)dk (20) 

where kc is chosen such that the curve fitting of the semi-
infinite panel is convergent within required accuracy. One ad
vantage of this integration scheme is that for given sources or 
receivers having the same depth we have to do the fitting (most 
time-consuming part) of the complex kernel with Chebyshev 
polynomials only once. This reduces the computation time 
considerably when a large number of sources or receivers have 
the same depth. 

Biconjugate Gradient Method. The biconjugate gradient 
method was first introduced by Lanczos (1950, 1952) for ob
taining the eigenvalues of unsymmetric real matrices. The 
method was later extended by Fletcher (1976) to treat real 
indefinite systems of equations. The method was then extended 
by Wong (1978) and Jacobs (1980) to treat complex nonsym-
metric matrix equations. 

The algorithm of biconjugate gradient method is listed as 
follows: 

r0 = b - A x 0 = Po (21) 

Wo = qo = Jo (22) 

where the overbar denotes the conjugate of a complex number. 
Then we evaluate 

«Jc = 
< « • * ; < ! * > 

<Ap*.;w/t> 

rk+i = rk + akApk 

ck~-

(23) 

(24) 

(25) 

(26) 

(27) 
<">;q,t> 

Pk+i = rk+i + ckpk (28) 

yvk+l = qk+l + ckv/k. (29) 

The biconjugate gradient method was never very popular be
cause, (a) it did not minimize any functional and, (b) it was 
not known a priori when the method would break down. Hence, 
neither the residuals nor the errors in the solution would de
crease monotonically at each iteration. However, the advan
tage of the biconjugate gradient method is that it does not 
square the condition number ofthe original equations. In many 
cases, the biconjugate gradient method gives some of the fastest 
solution times among all generalized conjugate gradient meth
ods (Langtangen and Tveito, 1988). Today it is considered as 
one of the most efficient iterative methods for nonsymmetric 
systems, and it is used in a variety of application areas (Sarkar, 
1981, 1987; Sarkar et al., 1988). 

For the scattering problem considered here we have used the 
biconjugate gradient method to solve the system of equations 
as shown in Eq. (18). The iteration was terminated when the 
following error criterion was satisfied 

IIAx*-bll 6 

-n£i-sl°-fi- (30) 

Storage Scheme of Matrix. Equation (18) is solved by the 
biconjugate gradient method in which only the multiplication 
of matrix and vector is involved. This does not destroy the 
sparsity pattern of the matrix at any iterative step. Hence, a 
compacted data structure (Nour-Omid and Taylor, 1984) which 
stores only the nonzero terms of the stiffness matrix is a suitable 
storage scheme has been used. More details have been given 
by S. W. Liu and S. K. Datta (1990). 
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Normalized dispersion curves for graphite/epoxy plate 

It may be noted that the required storage for this compacted 
structure varies linearly with the number of equations. There
fore, the saving is more for larger problems and the storage 
requirement of the compacted assembly is not affected by the 
node ordering. This is important for our method because we 
can number the nodes in any convenient order without in
creasing the storage. 

Results and Discussions 
The method discussed in previous section has been imple

mented in a FORTRAN program. As an example, we present 
here results for the surface displacements of an infinite plate 
with a horizontal crack. It may be noted from the procedure 
described previously that the method is easily implemented for 
any other defect geometry or for multiple defects. We consider 
the plate to be transversely isotropic with symmetry axis lying 
parallel to the x-axis. The plate specimen for which numerical 
results are given is made of graphite/epoxy with elastic con
stants Cn = 160.7 GPa, C3i = 13.96 GPa, C55 = 7.07 GPa 
and Cn = 6.44 GPa. The density is 1.8 g/cm3. Thus, the 
longitudinal and shear wave speed along the fibers are 9.45 
mm//xs and 1.98 mm//iS, respectively. The geometry of the 
problem is shown in Fig. 1. The fibers are aligned along x-
direction, plate thickness is 5.08 mm, the crack with length 
6.4 mm is located horizontally at a depth of 0.635 mm from 
one of the free surfaces (later, we'll call this surface as top 
surface). The line load is applied in z-direction at top surface 
5.68 mm horizontal distance away from the left crack tip. 

Numerical Accuracy and Convergence Rate. The hybrid 
method used in this study has been tested for its accuracy for 
different finite element meshes by performing the zero-scat-
terer test. This is done by giving the crack the same material 
properties as those of the surrounding medium. The relative 
error of the calculated total displacement and the incident 
displacement field is kept within five percent by adjusting the 
number of finite elements. Generally, ten elements per wave
length is enough to accomplish the accuracy desired. 

In order to obtain the time-domain responses, we calculated 
the frequency-domain responses for frequencies ranging from 
zero to 1 MHz. The size of the finite element mesh has been 
chosen according to the numerical accuracy desired at the 
highest frequency. 

The finite element part of current problem is composed of 
400 elements and 1274 nodes, the nodes on boundary B being 
49. The total degree-of-freedom is 2548, and the iteration num
bers vary from 1717 to 2558 as the frequencies vary from the 
lowest to the highest of the frequency range under investiga
tion. 

Incident Signal. The incident wave signal is taken to be a 
Ricker wavelet defined as (Ricker, 1977) 

M(r) = (27r2/?r2-l)e^2/?T2 (31a) 
where fc is the characteristic frequency (normalized) of a 
wavelet. The time of peak amplitude (= 1.0) is at T = 0, where 
T is nondimensional time defined as T = tcs/H, cs being the 
shear wave velocity along fiber direction and t is the time. 

The Fourier transform of the Ricker wavelet is 

S +Oo 

u(r)eik*HTdT 
-aa 

(k2H)2 

5/2 fi 
(316) 

which has the peak amplitude {2/\firfce) at e0 = 2TT/C. The 
amplitudes approach zero rapidly after k2H > 3e0; therefore, 
the high frequency responses are filtered out. k2 is shear wave 
number along fiber direction. The precise values for e0 in cur
rent study can be found in the next subsection. 

Numerical Results. For the propagation of waves in the 
homogeneous plate of transversely isotropic material, the dis
persion equation separates into two, one for the symmetric 
motion and the other for the antisymmetric case. Figure 2 
shows the normalized dispersion curves for the graphite/epoxy 
plate considered here. These curves are seen to reach a pro
nounced plateau at normalized phase velocity (c/cs) equal to 
4.7, which is the ratio of longitudinal wave velocity to shear 
wave velocity along the fiber direction. The Rayleigh wave 
velocity in this plate is 0.988 of shear wave velocity. The cut
off frequencies of the various branches play an important role 
in the frequency response as discussed in the following. These 
are marked on Figs. 3(a) and 6. 

Figure 3(a) shows the vertical surface response spectra at 
points on the top surface without the crack due to a vertical 
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SURFACE RESPONSE SPECTRUM 

A l S I 5 S2 A2A310 S3 S4 15 A4 
NORMALIZED FREQUENCY (K2H) 

Fig. 3(a) Surface response spectrum of a graphite/epoxy plate without 
crack due to an impulsive load. The observation points are between x 
= -5 .0 mm and x = 5.0 mm on the top surface. 

SURFACE RESPONSE SPECTRUM 

0 5 10 15 20 

NORMALIZED FREQUENCY (K2H) 

Fig. 3(b) Surface response spectrum of a graphite/epoxy plate with 
crack due to an impulsive load. The observation points are the same as 
those in Fig. 3(a). 

impulsive (delta function) load. Referring to Fig. 1, these points 
lie equally between x = - 5.0 mm to x = 5.0 mm. For plotting 
convenience, we have replaced amplitudes at the first two fre
quencies at each point to zero. This causes the fictitious peaks 
at k2H equal to 0.425. The cut-off frequencies for the first 
four symmetric and antisymmetric modes have been marked 
as SI through S4 and Al through A4 in this figure. The maxima 
at k2H equal to 1.4TT(S1), 2.8ir(A2), 4.2TT(S4), and 5.6T(A4) 
are seen in this figure and they are related to the cut-off fre
quencies of the symmetric and antisymmetric longitudinal 
modes (V/3(2/J - 1)TT, VJ32«ir), respectively. Here, /3 = 
C33/C55. There are two thick curves in this figure which show 
the spectra at stations right above the two crack tips on the 
top surface. Figure 3 (b) is the vertical surface response spectra 
of this graphite/epoxy plate in the presence of the crack due 
to the same impulsive load. Note that the extent of this region 
falls outside that of the FE region (Fig. I). Thus, the response 
presented in this figure is a composite of the data obtained 
from the FE and integral representation computations. Com
paring with Fig. 3(a), not only those aforementioned peaks, 
but also more peaks can be found in Fig. 3(b). The maxima 
at k2Hequal to TT(A1), 2ir(S2), 3?r(A3) and 4TT(S3) are identified 
as cut-off frequencies of antisymmetric and symmetric shear 

SPECTRUM OF RICKER WAVELET 
1 . 0 — ' — • - ' — ' ' — i • • - ' — r — ' — 1 '—^— 

normalized central frequency 

k2H=4,71 

0.8 - / ''•:. 
k2H=3.14 

LU 0.6 -
Q 
3 
H 
_ J 
Q -

< 0 .4-

0.2 

0.0 L i ^ , , , i , , •-,• i : ~ - - T - - _ _ _ j 

0 5 10 15 
NORMALIZED FREQUENCY (k2H) 

Fig. 4 Spectra of Ricker wavelet at normalized central frequencies 4.71 
(292 kHz) and 3.14 (195 kHz) 

modes, respectively. These shear modes have been excited due 
to the presence of the crack. The peaks at k2H equal to 5.14 
is related to the depth of the crack. Because the ratio of crack 
length to crack depth is large (» 10), we can model this problem 
locally as two separate plates with thicknesses H/8 and 7/8H. 
The cut-off frequencies for the thinner plate are eight times 
those for the original plate with thickness equal to H and they 
are far beyond the frequency range we are investigating. How
ever, the cut-off frequencies for 7/8H plate are expected to be 
found in Fig. 3(b). The aforementioned value 5.14 is exactly 
the cut-off frequency for the first symmetric mode of the 
7/8H plate. Thus, this determines the depth of the crack. 
Another group of peaks at k2H equal to 1.2 is due to the 
resonance of the finite plate above the horizontal crack. 
L. M. Keer et al. (1984) and P. Cawley and C. Theodorako-
poulos (1989) have studied this effect in their papers. They 
proposed that the resonance frequency for a defect may be 
predicted by using plate theory with length equal to crack length 
and thickness equal to crack depth. The natural frequency of 
this plate is 1.13 (k2H) for simply supported ends and 2.56 
(k2H) for clamped ends which provide lower and upper bounds 
of the frequency of this peak. This result is consistent with 
those models that have been suggested by these authors. 

Figures 5(a) and 5 (ft) show the time-domain response. The 
incident signals have the time dependence given by Eq. (31a) 
(Ricker pulse) and spectra with normalized central frequencies 
tB equal to 4.71 (292 kHz) and 3.14 (195 kHz) as shown in 
Fig. 4. In Fig. 5(a) the arrival of the Rayleigh wave at receivers 
from x = - 5.0 mm to x = 5.0 mm is marked by the dotted 
line. Since the source is at x = -8.88 mm, the wavespeed is 
1.7 mm/Vs. From Fig. 2, we can identify the Rayleigh wave 
speed at normalized central frequency (k2H) 4.71 to be 1.8 
mm/jus. The error of our prediction is 5.5 percent. This is 
followed by diffracted Rayleigh waves propagating back and 
forth between the crack tips. In fact, the time of one round 
trip by these waves can be used also to estimate the length of 
the crack and this complements the estimate obtained from 
the resonance frequency. Figure 5(b) shows the same feature 
except that the arrival of the first Rayleigh wave is not as 
pronounced as in Fig. 4. This is because the frequency of the 
pulse is fairly low. However, the back and forth propagating 
Rayleigh wave is still easily discernible. It is thus seen that the 
crack can be characterized even with a low-frequency pulse. 
This seems promising, since the composite materials under 
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SURFACE RESPONSE IN TIME-DOMAIN 
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Fig. 5(a) Time-domain surface displacements of Fig. 3(b) with Ricker 
wavelet as incident signal. The normalized central frequency is 4.71. 

SURFACE RESPONSE IN TIME-DOMAIN 

20 
TIME(microsec) 

Fig. 5(D) Time-domain surface displacements of Fig. 3(6) with Ricker 
wavelet as incident signal. The normalized central frequency is 3.14. 

consideration are usually very attenuative (in this study atten
uation has been neglected). 

Figures 6-8 show the frequency dependence of the vertical 
displacement amplitudes at the origin (point 1, the point right 
above the crack center), at a point 6.5 H from the source (point 
2), and at the epicentral point on the bottom surface (point 
3), respectively, in the absence and presence of the crack. The 
source has impulsive time dependence. The resonance peak at 
k2H = 1.2 is dominant in Fig. 6, barely visible in Fig. 8 and 
is absent in Fig. 7. The sharp peaks at the cut-off frequency 
k2H = 1.4TT are quite pronounced in all these figures. It is 
noted that they are sharper on the topside of plate than at the 
epicenter. This is perhaps because points 1 and 2 lie along the 
fiber direction, whereas point 3 is transverse to it, relative to 
the source. Other features are: The peak at k2H = 5.14 is 
visible in Fig. 6, but not in the other two; the peak at k2H = 
1.47r at point 2 is larger in the absence of the crack than when 

the crack is present; the peak at k2H = TT is visible in Figs. 7 
and 8 but absent in Fig. 6. Thus, it may be necessary to make 
measurements at more than one location in order to capture 
the defect features. 

Conclusion 
In this paper, a hybrid method combining the boundary 

integral representation and finite element technique has been 
used to investigate the time-domain response due to waves 
scattered by a horizontal crack in a transversely isotropic plate. 
From computed results, we can quantitatively characterize this 
crack. Thus, the data presented can aid in ultrasonic nonde
structive evaluation. In addition, we verify that the plate theory 
with simply supported ends is a good model in explaining 
resonance effects of a crack near a free surface if the crack 
length-to-depth ratio is large. 
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Fig. 6 Spectrum of surface displacements of a graphite/epoxy plate 
with and without crack due to an impulsive load. Receiver is at the origin. 
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Fig. 7 Spectrum of surface displacements of a graphite/epoxy plate 
with and without crack due to an impulsive load. Receiver is at 6.5 H 
from source on the top surface. 

Since we use singular elements at crack tips, from the crack-
opening displacements the stress intensity factors can be cal
culated. Studies of SIF will be presented in a separate paper. 
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A General Algorithm for the 
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Hypersingular Boundary Integral 
Equations 
The limiting process that leads to the formulation of hypersingular boundary integral 
equations is first discussed in detail. It is shown that boundary integral equations 
with hypersingular kernels are perfectly meaningful even at non-smooth boundary 
points, and that special interpretations of the integrals involved are not necessary. 
Careful analysis of the limiting process has also strong relevance for the development 
of an appropriate numerical algorithm. In the second part, a new general method 
for the evaluation of hypersingular surf ace integrals in the boundary element method 
(BEM) is presented. The proposed method can be systematically applied in any 
BEM analysis, either with open or closed surfaces, and with curved boundary ele
ments of any kind and order (of course, provided the density function meets nec
essary regularity requirements at each collocation point). The algorithm operates 
in the parameter plane of intrinsic coordinates and allows any hypersingular integral 
in the BEM to be directly transformed into a sum of a double and a one-dimensional 
regular integrals. Since all singular integrations are performed analytically, standard 
quadrature formulae can be used. For the first time, numerical results are presented 
for hypersingular integrals on curved (distorted) elements for three-dimensional 
problems. 

1 Introduction 
Boundary integral equations with hypersingular kernels arise 

whenever the gradient (or, e.g., the normal derivative) of a 
classical boundary integral equation is taken. In fact, such 
equations involve the derivatives of already strongly singular 
kernels. 

So far, the typical field of application of hypersingular equa
tions has been the study of the scattering of waves by thin 
screens or cracks. In static and dynamic elastic crack analysis, 
they are sometimes referred to as traction boundary integral 
equations. However, in many other fields, the reliable appli
cation of hypersingular boundary integral equations (HBIE's) 
would be desirable and useful. To mention but a few, sym
metric BIE formulations, design sensitivity analyses, resolution 
of fictitious eigenfrequencies, plate bending, are all fields that 
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would benefit from, if not require, application of hypersingular 
boundary integral equations. Moreover, hypersingular BIE's 
would also allow stresses in elastic (or elastoplastic) problems 
to be computed directly on the boundary. However, for the 
most part, HBIE's seem to have been avoided, whenever not 
actually required in a given problem. 

In those cases where the use of such HBIE's appeared un
avoidable (e.g., crack problems), several schemes have been 
devised to lower the order of kernel singularity before nu
merical treatment. 

The integration-by-parts approach has been the most largely 
pursued (e.g., Sladek and Sladek (1984), Bonnet (1986, 1989), 
Polch et al. (1987), Nishimura and Kobayashi (1989)). To avoid 
the hypersingular kernels, some derivatives are shifted from 
these kernels onto the boundary layers (e.g., crack opening 
displacement), thus obtaining a formulation in terms of strongly 
singular kernels. The same final formulae are obtained through 
other approaches (Zhang and Achenbach, 1989). Bonnet (1986, 
1989) also obtained a further regularization for curved three-
dimensional cracks by employing a version of Stokes' theorem. 
However, numerical results are so far available only for flat 
cracks. 

Recently, Krishnasamy et al. (1990) presented another gen
eral approach to the numerical treatment of HBIE's. It is 
essentially based on the conversion of all integrals with hy
persingular kernels into a sum of line integrals, surface integrals 
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with a less singular integrand, and a solid angle. The conversion 
is achieved through Stokes' theorem, and it is performed before 
any discretization. Since no integration by parts is performed, 
the problem is still formulated in terms of the original variables. 
Numerical results are presented for flat cracks. 

In Budreck and Achenbach (1988) the regularization is 
achieved through divergence theorem, but it is carried out after 
discretization of the traction integral equation. However, this 
method is applicable only on flat cracks and allows only one 
collocation point per element (usually, constant approxima
tion). 

Another regularization of HBIE's can be achieved by the 
use of known elementary solutions of the governing equation, 
as suggested by Rudolphi (1990,1991). Basically, this approach 
can be regarded as the extension of the well-known rigid-body 
motion approach for standard BIE's. While very attractive in 
some cases, this method fails when dealing with open surfaces 
as it is the case in crack analysis. 

In the present paper a different idea is pursued. It is dem
onstrated that all hypersingular integrals arising in the bound
ary element method (BEM) can be directly transformed into 
ordinary (regular) integrals in the parameter plane of intrinsic 
coordinates through simple (although rigorous) manipulations. 

The method is absolutely general and has proved to be very 
effective. All singular integrations are performed analytically, 
and standard quadrature formulae are used only for regular 
integrals. For the first time, numerical results are presented 
for hypersingular integrals on curved elements. 

The proposed method can be regarded as the extension to 
hypersingular integrals of the method developed by Guiggiani 
and Gigante (1990) for integrals with a strong singularity, also 
typical in the BEM. 

First, however, a novel (careful) analysis of the limiting 
process involved in any singular boundary integral equation 
is presented. It provides some important theoretical insights, 
and has strong relevance for the development of the numerical 
method mentioned previously. 

2 Derivation of Hypersingular Boundary Integral 
Equations 

In this section the limiting process to obtain HBIE's at (in 
general) nonsmooth boundary point is described in an attempt 
to clarify some still possibly obscure points. It is also a nec
essary preamble to the derivation of the numerical method that 
forms the subject of the next section. 

For the sake of brevity and clarity, analysis is hereafter 
restricted to three-dimensional potential problems (Laplace 
operator). However, all results are applicable to any other 
scalar or vector elliptic problem since only the order of sin
gularity is relevant. When appropriate, the corresponding 
equations for vector problems (such as static or time-harmonic 
elasticity) will be also provided. 

Let us first consider the well-known standard boundary in
tegral equation for the harmonic function u(x) on a three-
dimensional domain Q, bounded by the regular surface S (Kel-
log, 1929) with unit outward normal «(x) = [n,j (Fig. 1) 

lim j ( {T(y,x)u(x)-U(y,x)q(x)]dSx\=0, (I) 
e - ° UiS~e6)+se ) 

where q = du/dn = «,,«,- denotes the normal derivative of the 
potential. The kernel functions U and T represent the fun
damental solution and its normal derivative, respectively. 

If r = [(Xj - yi) {Xj - yi)]xn denotes the distance between 
the source point y and integration point x, the fundamental 
solution (/has a weak singularity of order r~], when r — 0, 
while the other kernel function T = dU/dn(x) has a strong 
singularity of order r~2. 

Since in Eq. (1) both the source point y = {y,\ and the 

Fig. 1 General vanishing neighborhood around the source point 

integration point x = {x,} lie on the surface S, a limiting 
process is necessary. Actually, since Eq. (1) stems from Green's 
second identity, it may be only formulated on a domain not 
including the singular point y. The situation is exemplified in 
Fig. I, where a (vanishing) neighborhood ve of y has been 
removed from the original domain Q. The integration is thus 
performed on the boundary Se = (S - e6) + se of the new 
domain Qe = fl - ve (Fig. 1). Of course, the integration must 
be done before taking the limit. Since Eq. (1) already states 
that the value of the overall limit is zero, we may expect that 
all divergent parts (if any) will be cancelled out in the end. 

Notice that it is not necessary to restrict the shape of ve. It 
may have any shape, provided y is an exterior point for Q£ and 
Sf is a regular surface in the sense of Kellog (1929). Equation 
(1) is the Green's second identity for the two harmonic func
tions u and U on tte. 

Therefore, it is not necessary to take a sphere (a circle in 
two dimensions) to exclude the point y. A sphere is merely the 
most convenient shape because it simplifies the analytical ma
nipulations, but its selection does not affect the final result, 
that is the value of the limit (see also, Rudolphi et al. (1988) 
and Brockett et al. (1989)). This is to say that the choice of a 
sphere is not at all mandatory, and, accordingly, a priori 
"interpretations" (e.g., in the principal value sense) are not 
actually necessary when dealing with singular BIE's. 

However, once the shape of the vanishing neighborhood ve 
has been selected, both et and sc are uniquely determined (Fig. 
1), and their shapes must be preserved while e — 0+ (we assume 
that the maximum chord of ve approaches 0 when e -~ 0). 
More importantly, the shape of e£ must be consistent with the 
shape of 5e throughout the process. Any violation (for example, 
due to the discretization process) would lead to erroneous 
results, as pointed out in Guiggiani and Gigante (1990). 

Since all functions of y in Eq. (1) are regular (U, T € C°°, 
on Q - ue), we can differentiate it with respect to any coor
dinate y-, of the source point, thus obtaining 

lim \ [K,(y,x)a(x) 

-Wi(y,x)q(x)]dSx}=0, (2) 

where 
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w,-
dU 

y.J-I- dU 
nk(x). (3) 

dy/ dxkdyi 

For instance, for three-dimensional potential problems, we 
have 

W,(y,x) = 
1 

Aw2 

^ ( y , x ) = -
4-wr3 (4) 

where /;,• = dr/dx, = -dr/dy,. As expected, the kernel Wt 

shows a strong singularity of order r'2 while the kernel 1̂  is 
hypersingular of order r~3, as r —• 0. 

Now, we assume that the potential u € C I , a , at y, that is, u 
is differentiable at y, with its first derivatives satisfying a Holder 
condition. Accordingly, the potential u(x) and its normal de
rivative q(x) can be represented by the following expansions: 

u(x) = u(y)+u,k(y)(xk-yk)+0(ri + a), 

q{x) = uik(x)nk(x) = uik{y)nk{x) + 0(ra), (5) 

where a is a positive constant (usually, a. = 1). This fact has 
also relevance in the selection of the discretization scheme, as 
it has to satisfy the same regularity requirements (w g C1,a, 
and q € C°'a) at each collocation point (see next). As also 
stated, e.g., in Martin and Rizzo (1989) and Krishnasamy et 
al. (1990), these continuity requirements are demanded by the 
nature of the hypersingularity, no matter what method is used. 

By adding and subtracting in (2) the relevant terms of ex
pansions (5), a more convenient form of the HBIE (2) is ob
tained as 

im+ ( [Vi(y, x)u(x)-W,(y, x)q(x)]dSx 

+ \ {Vj[u(x)-u(y)-utk(y)(xk-yk)] 

-Wi[q(x)-u_k(y)nk(x)])dSx+u(y) j V,dSx 

+ «.*(y) J [V,(xk-yk)-Wink(x)]dSx]=0. (6) 

Since we have to manipulate Eq. (6), we select the most 
convenient shape for se, that is a sphere centered at y and of 
radius e. The selected shape of se also enforces the shape of 
e„ which becomes a symmetric neighborhood on 5 around the 
singular point y (Fig. 1). Although the value of the limit taken 
as a whole in either Eqs. (2) or (6) is completely independent 
on the selected shape of ve, the value of each term in (6), taken 
separately, does actually depend upon the shape of either e£ 

or se. 

Since s£ is a sphere, the limits of all integrals on sc in (6) can 
be evaluated explicitly. Because of the expansions (5) and since 
dSx = 0(e2) on s€, it follows that 

lim ( 
e-0 + J , 

(V,[u (x) - u (y) - uik(y){xk~yk)} 

- W,{q(x)-u,k(y)nk(x)))dSx = 0, (7) 

so that we only have to consider the limit of the other integrals 
on se. They are given by (see Appendix A for a detailed de
rivation when y is at a corner point) 

lim [ Wi(xk-yk)- Wjnk(x)]dSx = cik(y), 

and 

lim ( 
e-0 + J., 

VjdSx = lim 
e-0 

bi(y) 

(8) 

(9) 

where cik and bt are (bounded) coefficients that only depend 
upon the local geometry of S at y. A few comments are in 
order here. 

The coefficients c«(y) are the free-term coefficients of the 
hypersingular boundary integral equation for the potential de
rivatives. Indeed, they are multiplied by uk(y) in Eq. (6). Notice 
that, in general, both kernels Wt and V-, in (8) contribute to 
them (see Appendix A). At smooth boundary points, the free-
term coefficients simply become cik = 0.5 bik. 

On the other hand, Eq. (9) states that the limit on se of the 
integral of V, is either zero or unbounded, depending on the 
value of b£y). It is shown in Appendix A that b, = 0 if y is 
an internal point for ii. If y is a boundary point, then b, ^ 0 
(in general), and the limit in (9) is unbounded of order e_1. 
However, this problem is only apparent and it causes no trou
ble. As a matter of fact, the apparent inconsistency arose only 
because we artificially separated the integrals on st from the 
integral on (S - ee). If they are considered together as they 
are in the original Eq. (6), no unbounded quantities arise at 
all, as will be shown below. The separation into integrals on 
sc and on the remaining surface (S - ef) is allowed only when 
each single term remains bounded by itself, which is not always 
the case in HBIE's. 

According to the analysis above, the hypersingular boundary 
integral equation for scalar problems can be written in the 
following form: 

c,-*(y)«,*(y)+ lim 
e-0 + 

[Vi(y, x)u(x) 
' (S-eJ 

- W,(y, x)q(x)}dSx+u(y) ^M =0. (10) 

A similar HBIE may be obtained for vector problems, such 
as elasticity (either two-dimensional, three-dimensional, or ax-
isymmetric) 

e-0 + 
'(S-ee) 

[ ^ ( y , X)Wj(x) 

- Wikj{y, x)tj(x)]dSx+Uj{y) ^ ^ \ =0, (11) 

where Uj and tj are the displacement and traction components, 
respectively. Once again, if y is a smooth boundary point (and 
s,, had a spherical shape), the free term in (11) simply reduces 
to 0.5 8ij8khUj>h(y) = 0.5uhk(y). The kernels in (11) are obtained 
by differentiating with respect to yk the corresponding kernels 
in the standard BIE: Wikj = dUij(y, x)/dyk, and Vikj = d7^(y, 
x)/dyk. Their expressions for elastic problems are given in 
Appendix B. Equations like (11) can be used to compute all 
displacement derivatives u,j(y) at any boundary point, which 
allows for the evaluation of the whole stress tensor <Ty(y) di
rectly on the boundary. Additional information on HBIE's 
for vector problems are provided in Guiggiani et al. (1991). 

In Eqs. (10) and (11) the limiting process is still indicated 
explicitly. This differs from common practice wherein the no
tation and names Cauchy principal value and Hadamard finite 
part are introduced, as could be easily done here as well. We 
choose not to do so here, however, since the explicit expressions 
in (10) and (11) may perhaps have clearer meaning. We also 
show thereby that such names and notation, however useful 
to some, are not necessary in the derivation of (10) and (11). 

The numerical treatment proceeds directly from equations 
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Fig. 2 (a) Source point on one element; (b) adjacent elements connected 
to the source point 

in the form of (10) or (11). Care will be exercised to preserve 
the features of the limiting process when the discretization of 
the geometry is introduced. 

3 Numerical Evaluation of Hypersingular Integrals 
As mentioned previously, our goal is the evaluation of the 

bounded quantity 

( [K,(y, X)M(X) Iim 
e-0 + J{S~e,) 

Wi(y,x)q(x)]dSx+u(y) My) (12) 

where W, = 0{r~2) and V, = 0(r~3), and, consistently with 
the already obtained cik(y) and bj(y), the neighborhood et 

around y on S is given by 

e e = { x € S l l x - y l < e ) . (13) 

Our goal can be splitted into the evaluation of 

«^(-I W,(y, x)q(x)dS1 

iS-e.) 

and 

lim 
e-0 + 

Vi(y,x)u(x)dSx + u(y) My) 
' (S -e £ ) 

(14) 

(15) 

Since Wt is only strongly singular, the evaluation of (14) can 
be achieved by the direct method proposed by Guiggiani and 
Gigante (1990) (see also Guiggiani, 1992a). On the other hand, 
due to the hypersingularity of Vh a new method is needed for 
the evaluation of expression (15). 

We denote that portion of S containing the singular point 
y by Ss. If discontinuous elements with collocation at element 
interiors are used, then Ss consists of just one element (Fig. 
2(a)); whereas if C1'"-continuous element are used to represent 
u, Ss consists of all adjacent elements connected to the singular 
point y (Fig. 2(b)). At present, the development of general 

A 

v 
it 

H I p ^ 

Fig. 3 Image in the parameter plane of the boundary element and of 
the vanishing neighborhood 

C1 '"-continuous elements for three-dimensional problems seems 
problematic. Therefore, we restrict ourselves to cases in which 
y belongs to just one boundary element. However, our analysis 
is equally applicable to the other case and the final formula 
will be given for both cases. 

As usual, on each boundary element, the potential is rep
resented by shape functions A'c(^1, £2) of local intrinsic co
ordinates £ = (£], £2), so that w(x) = E^^ix)]^. Therefore, 
from a computational standpoint, the subgoal (15) actually 
results into the evaluation of the integral / defined on the 
element(s) Ss 

1= lim 
£ - o + 

V,(y, x)Na(i(x))dSx+Na(rl) 
bid)] (16) 

(Ss-et) 

where N" represents those shape functions (usually just one) 
that are not zero at 17, the image in the parameter plane of the 
collocation point y (quite often, Wiy) = 1, although with 
hierarchical elements this might not be necessarily the case). 

By means of the usual representation for the geometry in 
terms of shape functions and nodal coordinates 

**(*) = £ ^ ( 0 4 , *=1,2,3, (17) 
c 

the boundary element Ŝ  is mapped onto a region Rs of standard 
shape in the parameter plane (usually, a square, or a right 
triangle). Accordingly, the neighborhood ee of y in the three-
dimensional space is mapped onto a neighborhood ae of 17 in 
the parameter plane (Fig. 3). It is important to note that, in 
general, at is not necessarily a circle. In the parameter plane 
of intrinsic coordinates, expression (16) becomes 

/ = lim j ( K,(y, xtt))Ar*({)/({)rf€,rff2 

+ W(, ) W ^] , (18) 

where dSx = J(£)d%\d%2- It is worth noting that, provided the 
A^fiKx)] for u are C1'"-continuous at y, the boundary elements 
can be of any kind and order. 

Following a common practice in the BEM, polar coordinates 
(p, 0) centered at t\ (the image of y) are defined in the parameter 
plane (Fig. 4) 

Journal of Applied Mechanics SEPTEMBER 1992, Vol. 59 / 607 

Downloaded 03 May 2010 to 171.66.16.21. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



2TT » p ( e ) 

' 

, 

/ 

km 

/ <*(e,#) 

y 

• 

~V 

1 

Fig. 4 Polar coordinates in the parameter plane 

Oii = iJi + P cosfl 

1.^2 = V2 + P sinS 

so that fi?£itf£2 = prfpcfe. Hence, from (18) and (19) we obtain 

(19) 

1= lim 
E-o+ 

2ir (.(3(9) 

n J, 
F(p, 6)dpdd + Na(r,) 

b,(y) 

where F(p, 6) = V^Jp 

(20) 

0(p 2) is the hypersingular in
tegrand, p = a(e, 0) is the equation in polar coordinates of ae 

(Fig. 4), and p = p(0) is the equation in polar coordinates of 
the external contour of the parameter domain Rs (Fig. 4). 

Now, let us analyze the singular function F(p, 6). Since it is 
singular of order p~2, we have a (Laurent) series expansion 
with respect to p in the form 

F(p,d) = 
F_2(0) ,F_,(fl) 

+ 0(1). (21) 
P P 

Notice that both F_ 2 and F_ t are just real functions of 0 (even 
when F(p, 0) is complex valued, as in time-harmonic problems). 
The dependence on 0 is crucial for expansion (21) to actually 
represent the asymptotic behavior of F(p, 6), when p — 0. 
Expansion (21) is one of the key ingredients of the present 
analysis. 

Also of basic relevance is the Taylor series expansion for 
a(e, 0), with respect to e 

p = a(e, 0) = e/3(fJ) + e2
7(0) + 0(e3). (22) 

Note that, in general, p = e/3(0) is the equation of an ellipse 
(Fig. 4). 

A systematic way of obtaining the explicit expressions of 
F-2%, F-i(6), /3(0) and y(0) is presented in Appendix C. Al
though, at first, it may seem quite a difficult task, it is shown 
that they can be easily and systematically obtained for any 
kernel function and for any kind of boundary element. 

Adding and subtracting the first two terms of the series 
expansion (21) in expression (20), we obtain 

/ = lim 
I-PW 

"aU.6) 

F{P,e)-

2ir ,»p(9) 

F_2(0) F_,(0) 

P 

i (0) 

dpdd 

dpdd 

S
2-K n /5(0) 

0 JaU,d) 

2(0) 
dpdd + Wiri) 

bi(y) 

= /o + / - , + / -2 . (23) 

Each term I0,1_u and I_2 in (23) is now analyzed separately. 
According to Eq. (21), in IQ the integrand is regular. There

fore, the limit is straightforward and simply becomes 

In 
0 ^0 

F(P, 6)-
F^2(6) F_,(0) 

dpdd. (24) 

This double integral can be evaluated by standard quadrature 
rules. 

Now, let us consider /_] and integrate to get 

/_ i = lim 
2TT »p(fl) 

F-dO) 
f - 0 J 0 Ja(c,fl) 

»2TT 

dpdd 

= lim F_,(0)[ lnlp(0)l- lnla(e , 6)\]d0 
£ - 0 + J„ 

F_!(0)lnlp(0)lri0- lim F_1(0)lnle/3(0)l<i0 
n e—0 Jn 

F_,(0)ln 
o 

2x 

P(0) 

F_ 1(0)ln 
P(0) 
/3(0) 

de-

dO. 

lirn lne I F^,(0)e?0 

(25) 

Equation (25) shows that /_ t is equivalent to a simple regular 
one-dimensional integral. In the derivation of this equation, 
first we integrated analytically with respect to p (i.e., the sin
gular part), then we made use of expansion (22) for ce(e, 0), 
and, finally, we considered the property [l^F^^dd = 0. This 
property obviously follows from inspection of F^ t(0), since 
F_j(0) = -F_ i (0 + 7r), as shown in Appendix C. However, 
the fact that the above integral must vanish need not be shown 
explicitly for each case. Indeed, if the integral from 0 to lit 
of F_!(0) were not zero, the last limit in (25) would be un
bounded, which leads to a contradiction since /has been shown 
to be bounded (it follows from the validity of the second Green 
identity on fie, on which everything here is based). A similar 
statement can also be found in Guiggiani and Gigante (1990). 

A similar treatment applies to J_2 such that 

/_•>= lim 

lim 
e-0 + 

!
2?r pp(0) 

0 •'a(tfi) 

f>27 

•'o 

F_ 
#Ud0 + iV»(,)^y) 

F-2(6) 
1 1 

P(0) «(£,*) 
de + N"(j) a,-(y)j 

fr2'F_2(0) / T(0)\ 
£-(T ( Jn ep(O) \ P(6)J « 

2TT 
^-2(0) 

P"(0) 
tf0 

E
!T+ \ e / [J0 0(0) d0 + /V(v)&/(y) 

F-2(d) 
1 7(g) 

(32(0)""p(0) 
rf0 

^-2(0) 
7(g) 1 
02(0) P(0) 

d0. (26) 

Therefore, 7_2 is also equivalent to just a one-dimensional 
regular integral. Owing to the higher order of singularity of 
the integrand (cf. (25)), in this case both terms e/3(0) and e27(0) 
in the expansion (22) for a(e, 0) were relevant. As a general 
rule, the higher the order of singularity, the larger is the number 
of terms that have relevance. 

Interestingly enough, the singularity cancellation we have 
been speaking about is made explicit in (26). The unbounded 
term Wbj/e due to an integral on se (see (9)) is cancelled out 
by a corresponding unbounded term arising from the integral 
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M 

Fig. 5 Plane distorted element and collocation points 

on {Ss - et), so that the final result is perfectly bounded and 
meaningful. This cancellation is strictly related to the nature 
of the kernels involved, in the sense that the kernels must be 
obtained from the fundamental solution of the problem under 
consideration through application of the proper differential 
operators. For instance, in potential problems (Laplace equa
tion) it only occurs if both terms within square brackets in the 
hypersingular kernel function (4) are considered together. 

It is worth noting that in (25) and (26) the use of the ex
pansion for F(p, 0) allowed all singular integrations to be car
ried out analytically. Furthermore, the expansion for a(e, 6) 
allowed all limiting processes to be performed exactly. 

3.1 Final Formula for Hypersingular Surface Integrals. 
By collecting the previous results, the following final formula 
for the evaluation of hypersingular integrals in three-dimen
sional BEM analyses can be given 

!

2ir |>p(0) 

0 ^O 

F(P,0)-
-2(0) F. 

•y + m 

F_,(0)ln 
«0) 

-F-210) 

dpdd 

1 y(d) 

/32(0)Tp(0) 
dQ. (27) 

Expression (27) is the fundamental result of the present paper. 
It proves that the quantity /, originally given by a limiting 
process involving a hypersingular integral plus an unbounded 
term (see (16), and also (18), (20), and (23)), is simply equal 
to a regular double integral plus a regular one-dimensional 
integral. Notice that no approximations have been introduced 
in the derivation of expression (27) from the original statement 
(16). 

The terms containing p(d) takes into account the external 
shape of Rs, while the terms with /3(0) and y(d) account for 
the distortion of ae, which is introduced by the mapping of 
the original neighborhood ee (Figs. 3 and 4). 

Since we selected a symmetric shape for ee, we have in (27) 
that Jg""F_ ,(0)ln 1/3(0) I dd = 0 and JglrF_2(0)[7(0)//32(0)]rf0 = 0. 
However, the same does not hold for more general shapes of 
et. 

Both integrals in (27) are in polar coordinates defined in the 
parameter plane, which allows for a standard numerical im
plementation. As shown in Section 4 on numerical examples, 
standard Gaussian quadrature rules of low order provide very 
good accuracy. 

Formula (27) is fully general. It holds for any kind of bound-

• 

fc 

| ; 

ra 

1 

®c 

b 

1 

I 

Fig. 6 Image in the parameter plane 

ary elements employed. Moreover, a similar formula (which 
formally looks exactly the same) can be given for any hyper
singular boundary integral equation, either for scalar or vector 
problems. As a matter of fact, all functions involved can be 
systematically obtained as shown in Appendix C. 

If the singular point is shared by more than one element as 
in Fig. 2(b), formula (27) becomes 

=2 
/S"'<») 

Fm(P,e)-
F"l2(8) F? 

7 + 
,(0) dpdd 

a" 

f Fm
1(0)ln pmm 

/H0) 

-Fm
2(6) + : 

1 
w"(d))2, pmm 

del, (28) 

where the index m refers to one element around the collocation 
point at a time, and 0f < 0 < 9'2" on the mth element. As 
mentioned before, the interpolation functions for u on the 
elements must be C1 '"-continuous at the collocation point (see 
also Hartmann, 1989, pp. 29, 263). However, this is not related 
to the specific method used. Yet, it must be true for the original 
statement (2) or (6) to be meaningful. Therefore, such conti
nuity requirements have to be satisfied no matter what method 
of analysis is used, including all the other approaches to HBIE's 
mentioned in the Introduction. 

4 Numerical Examples 
The present method for the direct evaluation of surface 

integrals with hypersingular integrand is applied to two nu
merical examples. Eight-node quadrilateral elements were used 
because they are of sufficiently high order to test in full gen
erality all the aspects of the proposed approach. Moreover, 
they allow curved surfaces to be represented. All the com
putations were performed in double-precision arithmetic with 
16-digit accuracy. 

4.1 Plane Distorted Element. The first tests were per
formed on a plane quadrilateral element Ss with a high degree 
of distortion, as shown in Fig. 5. Due to the position of the 
nodes, the Jacobian is neither constant nor even linear. The 
singular point y was located at three different positions: (a) y 
= (0, 0); (b) y = (0.66, 0); and (c) y = (0.479226, 0.66), 
corresponding, respectively, to the intrinsic coordinates (0, 0), 
(0.66, 0), and (0.66, 0.66) in the parameter plane (Fig. 6). 

Without loss of generality, the following hypersingular in
tegral was considered (cf. (4)): 
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/ = lim 
>(Ss-ee)+se 

. dr 
dS, 

- lim 
e-0 + 

•dSx 

2TT 

'(Ss-ee) 
(29) 

where ee was chosen (just for convenience) to be a circle cen
tered at y and of radius e. The term subtracted in (29) is clearly 
affected by the selected shape of ee. 

This integral was chosen for the purpose of comparison since 
it can be integrated in closed form. Notice, however, that it 
shows the same relevant features of some typical hypersingular 
integrals in the BEM (cf. (4) and (16)). 

Formula (27) was employed for the computation, with F = 
( l / r 3 ) /p . Standard Gauss formulae were used for both the 
double and the simple integrals in expression (27) (an n x n 
product rule, and a formula of order n, respectively). For the 
actual application of Gaussian formulae, the element was sub
divided into four triangles with a common vertex at r\, as usual. 

Table 1 gives the numerical results as obtained for the three 
cases of Fig. 5 and n = 4, 6, 8, and 10, together with the exact 
values. With order n — 6, at least three significant digits are 
always exact. With order 10, the error is always lower than 
0.004 percent. With less distorted elements, a better accuracy 
is obtained. 

4.2 Curved Boundary Element. As a more practical ex
ample, a curved boundary element is considered (Fig. 7). It 
represents a 90-deg cylindrical panel (radius = 1, length = 
2). As above, three positions for the singular point y are taken, 
corresponding to intrinsic coordinates (a) rj = (0, 0), (b) rj = 
(0.66, 0), and (c) i; = (0.66, 0.66), respectively. 

Table 1 Numerical evaluation of hypersingular integrals on a flat dis
torted element (Fig. 5) 

order n 

4 

6 

8 

10 

exact 

case (a) 

-5.749091 

-5.749244 

-5.749236 

-5.749237 

-5.749237 

case (b) 

-9.222214 

-9.157439 

-9.154546 

-9.154525 

-9.154585 

case (c) 

-15.72221 

-15.30541 

-15.31768 

-15.32806 

-15.32850 

In this case, the hypersingular kernel function for three-
dimensional potential problems, 

V^~^? 3',3 dn 
• « 3 ( x ) (30) 

is integrated. It is interesting to note that this kernel is actually 
made up of the sum of a hypersingular term of order r~3 and 
of a strongly singular term of order r~2, as dr/dn = O(r), on 
Ss. However, they must be considered together for the can
cellation in (26) to occur. As in the previous example, the 
computation was performed according to formula (27), with 
F = V3Jp. Since the evaluation is performed in the parameter 
plane of intrinsic coordinates, there are no differences in the 
numerical implementation between a flat element and a curved 
one. 

The results are reported in Table 2, for orders of the Gauss 
formulae from 4 to 10, for the three cases (a), (b), and (c) of 
Fig. 7. The results are remarkably stable. Although the exact 
values are not available, the convergence is sufficiently good 
to expect very good accuracy also in this case. Other examples 
with boundary elements of different shape always showed the 
same stability and convergence (Guiggiani et al., 1991). Ap
parently, this is the first time that integrals with hypersingular 
kernels are evaluated on curved boundary elements. 

The implementation for, e.g., elastic problems would not 
have required a substantial higher effort, the only difference 
being in the expressions of F_2 and F_i in (27). Appendix C 
provides full detail on the systematic derivation of these quan
tities. 

5 Discussion and Conclusions 

In the first part of the present paper the limiting process 

Table 2 Numerical evaluation of hypersingular integrals on a curved 
element (Fig. 7) 

order n case (a) case (b) case (c) 

4 

6 

8 

10 

-0.343645 -0.496925 -0.876300 

-0.343804 -0.497091 -0.877106 

-0.343807 -0.497099 -0.877203 

-0.343807 -0.497099 -0.877214 

Fig. 7 Curved boundary element and collocation points 
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leading to hypersingular boundary integral equations has been 
thoroughly discussed. It shows that theoretical difficulties in 
dealing with HBIE's are only apparent. In fact, no unbounded 
quantities actually arise, provided the limit is properly taken. 
That essentially means that in the limit process, the integral 
on the whole boundary (S - e{) + se cannot be artificially 
divided into an integral on (S - e£) and an integral on se, 
unless the single parts exist independently. The analysis pre
sented in the first part also shows that no special interpretation 
is really necessary to attach meaning to either hypersingular 
or strongly singular integrals, their existence being always guar
anteed (whatever the shape of v„) by the very nature of the 
kernels involved. 

Equations (10) and (11) provide a rigorous, unambiguous 
form for any hypersingular boundary integral equations for 
scalar and vector problems, respectively. For clarity, the limits 
are still explicitly indicated. Equations in the form of (10) or 
(11) form the basis for the subsequent numerical work. 

In the second part, a general approach to the evaluation of 
integrals with hypersingular kernels has been presented. In its 
derivation, special care has been exercised in preserving the 
features of the limiting process when the discretization of the 
geometry is introduced (cf. Eqs. (16), (18), and (20)). Also 
noteworthy is that all singular integrations are performed di
rectly and analytically. The method can be applied on either 
closed or open surfaces (as, e.g., in crack analysis). 

The final formulae (27) or (28) show that any hypersingular 
integral is equivalent to the sum of a double and a one-di
mensional regular integrals. Since all integrals are expressed 
in the parameter plane of intrinsic coordinates, the actual com
putation requires only a straightforward application of stand
ard quadrature rules. The same formulae for two-dimensional 
problems are given in Guiggiani (1992b). 

Interestingly, the comparison of formula (28) in the present 
paper and formula (20e) in Guiggiani and Gigante (1990) shows 
that the latter is included as a special case in the former. Indeed, 
the two formulae coincide if F_2 = 0, i.e., if the integrand is 
only strongly singular instead of hypersingular. Moreover, if 
both F^2 and .F_i are equal to zero, formula (28) (or (27)) 
reduces to the familiar formula for weakly singular integrals 
in polar coordinates. Therefore, it is now available a unified 
method to the evaluation of singular integrals in the BEM. 

The numerical results confirm the effectiveness of the pro
posed approach even on curved surface elements. 
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A P P E N D I X A 

Free-Term Coefficients for Hypersingular Boundary In
tegral Equations 

In this Appendix, the free-term coefficients cik and ft, as
sociated to hypersingular boundary integral equations are de
rived. They are defined by expressions (8) and (9), respectively. 

For simplicity, let us consider two-dimensional potential 
problems. The kernel functions in (8) and (9) are given by 

a t / (y ,x) 1 
Wi(y, x) = -

By, '~2irrrj' 

Vi(y, x)=-^—5—"*(*)= 
dxkdyt 

2trr2 2rj-—n,(x) 
dn 

(Al) 

where r = Ix - y l , r,- = dr/dx, and t/(y, x) = -(l/27r)lnr 
is the familiar fundamental solution. Also, y = {yk} is the 
source point, and x = [xk] is the integration point. The out
ward unit normal at x is denoted by n = {nk}. 

Figure Al exemplifies the situation. For convenience, sc is 
assumed to be a circle centered at y and of radius e. The angle, 
with respect to a horizontal axis, is denoted by <p, so that, on 
s„ <p\ s <p < <pi. Owing to the selected shape of se, the following 
simple relations hold when x 6 se: 

r = e, 

rj = costp, 

n\= — zos<p, 

Xi-yi = e cosip, 

dn 

ri2 = sinip, 

n2= — sin^>, 

Xi-yi = t sin<o 

(A2) 

and dSx = ed<p. Moreover, the kernel functions become 
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Fig. A1 Definition of local geometry for free-term coefficients 

+ [(l~2V)8u+0rJrJ]—\, (Bl) 

where a = 1, 2 and /3 = 2, 3 in two-dimensional and three-
dimensional problems, respectively. The constant A is equal 
to l/[4air(l - v)]. 

The hypersingular kernels Vikj are therefore given by 

dT- A 

fly* r p 

- ni5jk+nj&ik~nk8u] - $nkr/j + 0 [ ( a + 3)r ; r / > 

drl 
+ (1 - 2*) ty> - 5,*/-,,- - V , / ) ^ . (B2) 

HV 
COSi/5 

2 « ' 

cos^_H^i 

2 M € 2ire 

sin<p 

27re' 

siny _ f̂ 2 

(A3) 

The integrations in (8) and (9) are now a straightforward 
matter. They are not much different from the derivation of 
the corresponding coefficients in the standard BIE (see Hart-
mann, 1981). For instance, 

M y ) [ „ J O 1 f"2cosp sing2-sinpi 1 
— ea<p = . (A4) - = J K,dS,= 

2ir Jn €" 2ir 

Note that b\ = 0 if <p2 = pi + 27r, that is if y is an internal 
point . Similar observations hold for b2 which are given by 

b2 = 
COS<Pi — COS<p2 

where r ( = dr/dx,. The other kernel functions WikJ = 
dUjj/dyk are given by 

(A5) 

However, these quantities do not need to be evaluated in actual 
computat ions. 

An analogous treatment applies for coefficients cjk. For in
stance, 

r i r^2 

c i i (y )=] m ( * i - . V i ) - » V » i ] d $ r = — J 2cosV*> 
f\ 

'lir 
(<P2-<P\) + 

sin(2<p2) - sin(2<pi) 
(A6) 

A P P E N D I X C 

Explicit Expressions of ^_ 2 (0) , F_i(0), 0(0), and y(6) 

Before deriving in a systematic way the expressions of F_ 2(6), 
F_i(0) , P(d), and Y ( 0 ) , some more basic expansions are ob
tained. In particular, we are interested in Taylor series expan
sions about the source point y € Ss of (x, - yd, r3, and /-,,-. 

As usual in the BEM, the coordinates of the generic point 
on the boundary element Ss are given by a parametr ic repre
sentation in terms of shape functions M°(^u £2), and nodal 
coordinates .xf, 

x,= 2}Af(Zi,M i=l,2, 3. (CI) 
c 

Let us indicate, by ij = (iji, ij2), the image of the source point 
y so that y, = hf(i)U i?2)4-

From (CI) , the first and second derivatives can be easily 
obtained, i.e., 

Note that cn = 0 if y is an internal point , while c n = 0.5 if 
y is at a smooth boundary point , i.e., if <p2 = y\ + v. The 
other coefficients are given by 

dXj dM° 

_ 1 
C22~2Tr 

(<P2-<Pl)-
sin(2^2)-sin(2^1) d2X; d2Af 

and 

Cl2 = C2\=~ 

2 ' 2 

sin <p2 — sin <p\ 

~2v ' 

(A7) 

(A8) 

x). 

(C2) 

(C3) 

By employing a Taylor expansion about the source point, 
it is easy to establish formulae of the form 

At smooth boundary points , c22 = 0.5, and c12 = c2l = 0, as 
expected. 

Xi-yi = 
dXj 

(€i-n)+lr (?2-r,2) 
{ = 1 

,d2Xj 

3f. 

» i - i ? i ) 2
+ y jr , 

?=1 afiflfc 
(€ i — »7l) (^2 — 172) 

i = n 

A P P E N D I X B 

Hypersingular Kernel Functions for Elastic Problems 

The well-known strongly singular kernels Ttj in the standard 
BIE for elastostatic problems are given by 

a2-v2f 

« = i 
+ .. (C4) 

where, as indicated, all derivatives are evaluated at y. 
If polar coordinates (p, 6), centered at 1/ are introduced in 

the parameter plane (see (19)), expansions (C4) become 
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Xi-yi=p 
dXj 

+P2 

cos8 + 
!{ = !, 

~d2x. 

dXj 

cos28 

£ = v 

s'm8 

d2Xj 

"a«i3«2 
cosflsinfl 

f = i 

every term in its expression is multiplied by a component nk 

of the unit normal vector. Therefore, the product Q,Jin (CI 1) 
can be expressed only in terms of rk and Jk, since we have 
that Jk = nkJ. This means that we need only the expansions 
of Jk (besides those of rik, already obtained) and not of either 
nk and J. 

« = i 

+ 0(P
i), (C5) jk=jk(v)+P 

or, more concisely, 

x,-y, = pA,W)+p2B,W) + 0{p3). (C6) 

Notice that A-, (6) and5;(0) are just simple trigonometric func
tions of 8. 

Since the series expansion (21) for the singular function 
F(p, 8) involves two terms, the first two terms in the above 
Taylor expansions have been considered. This is a generalrule. 
The higher the order of singularity, the more terms must be 
retained. In Guiggiani and Gigante (1990), only the first term 
was considered because the singularity was one order lower. 

It is now convenient to define 

A(d)=)J][Ak(e)]1} >o , 

B(8) = )j]lBk(0))2i >0 . (C7) 

According to the previous results, the Taylor series expan
sions for the powers of r = I x - y I are given by (repeated 
indicies imply summation) 

,.« — „" A " p"A"[\+nP 
AkB, 

+ 0 ( P " + 2 ) , « = 1 , 2 , 3, . . . . (C8) 

From (C7) and (C8) with n = 1, the expansions for the 
derivatives of r can be obtained and are 

._xi-y<_ pAi + p2Bi + Q{p3) 

" PA(I+P^)+0(P1) 

AI (B, AkBk\ 2 
= A + P ( A - A ' - A ^ ] + 0 ( P ) 

-di0(8)+pdn(d)+O(p2). (C9) 

Also important is the expansion for r . It is obtained from 
(C8) with n = 3 

1 1 

P3A3 

P3A3 

i + 3P ^ # + 0 ( P
2 ) 

7>AkBk (\ 

' p2A5 +U 

S_3(0) S_2(6>) / 1 \ 
= —*j~L + -Jj-L + 0[-). (C10) 

p p \pj 
Actually, the expansions of the inverse powers of r can be 
obtained directly from (C8) with negative n. 

It is worth noting that all the above expansions are valid for 
any kind of boundary elements. 

The hypersingular integrand F{p, 6) is given by 

1 
F=ViN

aJp = pQiN
aJP, (Cll) 

xami-
nation of the regular function Q, (see (4) and (B2)) reveals that 
where the Jacobian is given by J = {Ll=[J

2}W2. An exami 

djk 
COS0 + 

« = i 

<>Jk 

9& 
sin0 + 0(p2) 

= Jk0 + PJki(8) + O(p2), (C12) 

where all derivatives are evaluated at 1/. The derivatives dJk/ 
d£,- can be expressed in terms of the first and second derivatives 
of *,-(£,, £2) as given in (C2) and (C3). 

The last expansion we require is that of the shape function 
TV" 

Na = N"(r,) + p\~-\ cosO + -
U = i 

dN° 

a?2 
sin# + 0(P

2) 

= Na
0 + pNa

l(d)+O(p2). (C13) 

Notice that JM and N% are just constants, and not functions 
of 8. 

The series expansions (C9), (CIO), (CI2), and (CI3) are all 
we need to obtain F_2 and F-1 for any hypersingular integrand 
in the BEM. 

For instance, let us consider the case of three-dimensional 
potential problem, whose kernels Vt are given by expression 
(4). We have for the hypersingular integrand in (20) 

F(P,8)= - ~ i [3 r , ( r , / , ) -J,\N"p. 

From (C9) and (CI2), 

r,kJk = ctko(8)Jlc0 + p[dkl(d)Jl(o + dkomJki(e)] + 0(p2) 

= p(BkJk0+AkJki)/A + O(p2)=ppl(6)+O{p2), 

since /4*7M = 0. Hence, from (C9) and (C15), 

rAr,kJk)=Pdi0(8)pl(e)+O(p2) 

= p(Ai/A2)(BkJk0 + AkJkl)+O(P
2) 

(C14) 

(C15) 

(C16) ^pgn(8) + 0(p2). 

Thus, from (CI2) and (CI6), 

^j(rikJk)-Ji=-Ji0 + p[3gn(8)-Jn(d)] + O(p2) 

= bi0 + pbn(e) + O(p2), (Cll) 

where bi0 = -J® = -7,(i/)is not a function of 6. Then, from 
(C13) and (C17), 

[3r,,(r,kJk) - Ji[N°= bi0Nl+p[bn (8)N°0 + *«*?<*)J + 0(p2) 

= ai0 + pan(8) + O(p2). (C18) 

Notice that ai0 = 0, if A/"(TJ) = A^ = 0. In that case, the 
integrand F would be only strongly singular. Therefore, from 
the expansion (C10) of r~3 and from (C18), the expansion of 
F{p, 6) can be obtained: 

F(P,8) = 

_J_ 
~ 4 T T P 

_ _J_ 
4TT 

[ai0 + pan(8)+O(p2)] 3 + 2 + u \ 
P P \P, 

S-3(g)gjD , S-2(fl)gffl + S-3(g)g«(fl) 
2 + rU(l) 

P P 

+ ^ + 0 ( l ) , (C19) 
P P 

which defines the two required (real) functions 7r_2 and F_i. 
Notice that these functions are basically made up of combi
nations of elementary trigonometric functions of 8. From in
spection, it is easy to see that F_2(0) = F_2(8 + w), whereas 
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F^i(9) = -F-i(8 + ir). These properties are shared by all 
hypersingular kernels in the BEM. 

A similar procedure can be applied to any kernel, no matter 
how complicated its expression may appear. As a matter of 
fact, even in vector problems such as elasticity the kernels are 
given by a combination of simple terms, each one basically 
like the potential kernel considered here above (cf. (4) and 
(B2)). Furthermore, even in cases like time-harmonic elasto-
dynamics or acoustics, where the kernels may seem very com
plicated, it just suffices to observe that their asymptotic 
behavior is exactly represented by their static counterpart (see, 
e.g., Bonnet (1986), Budreck andAchenbach (1988); or Guig-
giani (1992a), in the context of direct evaluation of singular 
integrals). Therefore, the functions F^2 and F_i are exactly 
the same for either static or dynamic problems. For instance, 
the expressions given in (CI9) are also valid for steady-state 
acoustic problems (Helmholtz equation). 

From the above results, the derivation of (3(8) and y(d) is 
quite easy. 

The contour of the neighborhood ee of radius e is given by 
(see expression (13)) 

e = r. (C20) 

In polar coordinates in the parameter plane it becomes (see 
(C8) with n = 1) 

e = pA(d)+p- Ajfik 
A - + O ( P 3 ) . (C21) 

By using the reversion of the above series (see, e.g., Beyer 
(1987), p. 297), we obtain the expansion in powers of e of the 
equation in polar coordinates of the contour of ae (the image 
of e j (Fig. 4) 

p = a(e, d) = 
A(6) 

- + 0(e3) 

= €0(0) + e2
7«?) + O(e3), (C22) 

that defines 0(0) and y(6) (see (C7)). Notice that 0(0) 
0(0 + TT), and y{d) = -7 (6 + TT). 
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An Investigation of Dynamic Pulse 
Buckling of Thick Rings 
The occurrence of dynamic buckling of thick rings responding to an impulse load 
is investigated by analytical and numerical solutions to the equation of motion and 
by nonlinear finite element analyses. An extension to the linearized analytical solution 
is made using a finite difference scheme which incorporates a nonlinear moment-
curvature relationship to model the effects of elastoplastic behavior and strain-rate 
reversal on the buckle formation. The finite element solution to the problem is 
formulated with the nonlinear code, ADINA. A comparison of the results shows 
that the numerical solutions (and, in particular, the ADINA solution) predict a 
significant reduction in the amplitude of buckling response and an increase in the 
predominant wavelength of response with time, in comparison to the linear analytical 
solution. A limited comparison to published experimental results of dynamic pulse 
buckling of thick rings is also given. 

Introduction 
Dynamic buckling of a structure can be defined by excessive 

growth of flexural displacements during its response period. 
Perturbations to the structure's motion, resulting from initial 
imperfections in its geometry and/or loading, increase in am
plitude to form a buckled mode shape. This type of failure 
was first investigated for rings subject to radial pulses by Abra-
hamson and Goodier (1962), whose theory is also described, 
along with subsequent studies of dynamic pulse buckling at 
Stanford Research Institute, in the summary collection of 
Lindberg and Florence (1987). 

Analytical solutions for dynamic pulse buckling of rings and 
cylinders are limited to simple cases of axisymmetric pulses 
(Abrahamson and Goodier, 1962; Goodier and Mclvor, 1964; 
Lindberg, 1964; Stuiver, 1965; Florence and Vaughan, 1968; 
and Lindberg and Florence, 1987). These solutions are also 
limited to linear material constitutive relationships of either 
plastic flow with strain hardening for thick rings and cylinders 
or elastic for thin rings and cylinders. Though limited to simple 
cases, these theories do give considerable insight into the char
acteristics of dynamic pulse buckling. Response to asymmetric 
pulses of complex spatial or temporal variation, cylinders of 
intermediate thickness, noncylindrical or nonuniform shells, 
or cylinders with nonlinear elastoplastic material constitutive 
relations are some examples of problems where these simple 
theories can no longer be applied. For these cases numerical 
solutions are required. 

Lindberg and Kennedy (1975) applied an axisymmetric finite 
element analysis uncoupled in each circumferential harmonic 
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of response to include a more complete theory of the shell 
response, and showed that the harmonics of predominant 
growth predicted by the simple theory for plastic flow buckling 
were too high. Their analysis included the effects of strain-
rate reversal which caused the attenuation of higher order 
harmonics and allowed lower order harmonics to become pre
dominant. More recently, Kirkpatrick and Holmes (1987) and 
Gefken, Kirkpatrick, and Holmes (1988) applied three-dimen
sional nonlinear finite element solutions to rings and finite 
length thin shells with good correlation to experimental results. 

This paper presents an investigation of dynamic pulse buck
ling of thick rings (representative of infinite cylinders under 
plane strain conditions) which deform radially with consid
erable plastic strain before buckle amplitudes become signif
icant. Three methods of solution are studied to examine the 
process of dynamic pulse buckling and to determine the effects 
of some nonlinear characteristics. The first method is the an
alytical plastic flow buckling solution of the equation of motion 
for a ring subject to a uniform initial velocity presented by 
Abrahamson and Goodier (1962), derived, in this case, for 
initial geometric imperfections. The second method is an ex
tension to the analytical solution in which an explicit finite 
difference solution to the equation of motion is developed to 
model nonlinear moment-curvature behavior by including elas-
toplasticity and strain-rate reversal in the constitutive relation. 
The finite difference solution indicates a complex state of cur
vature-rate reversal in combination with strain-rate reversal as 
the buckling motion becomes well advanced, but is unable to 
carry the solution through this state due to limiting assumptions 
in the governing differential equation. A nonlinear finite ele
ment solution with the program ADINA (1987) was the third 
method used, which includes all of the material and geometric 
nonlinear effects and can be extended to more complex dy
namic buckling problems. A parametric study of the modeling 
and solution requirements for ADINA is presented, as well as 
a comparison of the three solution methods and a limited 
comparison to some published experimental results. 
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Analytical Solution to the Equation of Motion 
Abrahamson and Goodier's (1962) solution for the dynamic 

pulse buckling of infinite, thick cylindrical shells (or rings) 
relies on the basic assumption that the ring is in a state of 
plastic flow with continuously increasing compressive plane 
strain with no reversal of strain rate. Perturbations in exten-
sional flexural modes, caused by an imperfect axisymmetric 
initial velocity, are superimposed on an unperturbed exten-
sional hoop motion. Moments, produced by a stress differ
ential through the thickness as a result of strain hardening, 
control the growth of the buckling perturbations. This theory 
is dependent upon the material having a nonzero plastic tangent 
modulus. The following discussion of this theory is for the 
case of initial shape imperfections, instead of the initial velocity 
imperfections used by Abrahamson and Goodier. 

The equation of radial motion, u, for a ring with initial 
imperfect shape, uh in nondimensional form, is: 

304 W 

d2u 
r + 5'« + —T = 

as 
d2Ui 

l + u'+W2 (i) 

where the nondimensional time is r = 1/VT2 ^JEh/p ht/a2 and 
the shell parameter is s2 = Scf/Ehl = \2amc?/Ehh

2. The con
stant hoop force is S = <jmh, am is the average flow stress, the 
moment of inertia of the ring cross-section is / = /!3/12, Eh 

is the tangent or strain hardening modulus, p is the shell density, 
h is the shell thickness, a is the shell radius, d is the circum
ferential coordinate, and t is real time. The parameters a, h, 
Eh, and am are assumed to be constant in this theory. The 
important assumption of linear plastic behavior (constant 
modulus Eh) allows a linear moment-curvature relationship, 
M = E/,IK, which has been incorporated into Eq. (1). 

For initial shape imperfections and response in the form of 
harmonic functions, the analytical solution to Eq. (1), for an 
initial nondimensional velocity, v0 = \j\2p/Eh a/h V0, is (not 
including wave numbers greater than s): 

u(x)=- 1 + cos ST + — sin ST 
s 

. ^ s2 A„ 
(cosh p„r - 1 )cos(nd + 4>„) (2) 

where pn = -\J ( « 2 - l)(s2-n2), n is the circumferential wave 
number, A„ is the initial shape imperfection, and </>„ is the 
phase angle shift for wave number n. 

By determining the critical point of the gradient of the per
turbed motion with respect to n, an expression for the critical 
buckling wave number, ncr, results: 

n2
cr = -(s2+l). (3) 

Buckling is established by investigating Eq. (2) for a range of 
n in the vicinity of ncr and setting a critical limit to the amplitude 
of modal growth. Lindberg and Florence (1987) present an 
approximate expression for the critical velocity to cause a 20-
fold increase in the initial imperfection of the critical wave 
number as 

•*m Jt (4) 

where c is the speed of sound in the shell material. 
The occurrence of strain-rate reversal is a limitation to this 

theory. It causes the outer fibers of a buckle to unload elast-
ically and give a much stiffer resistance to the further formation 
of the buckle. Strain-rate reversal occurs first in the buckles 
of shorter wavelength which have the highest curvature. The 
occurrence, but not the effect, of strain-rate reversal can be 
investigated by monitoring the strain at the outer fiber of the 
shell, u ± (h/2a)(d2u/d<j>2), where u is that of Eq. (2). In

vestigation of the occurrence of strain-rate reversal for the case 
of initial shape imperfections shows that it is dependent on 
the amplitude of initial shape imperfection, A„, and, that for 
shape imperfections commonly used in other studies (e.g., A„ 
= 0.01/?), strain-rate reversal occurs very early in the shell 
motion. 

Finite Difference Solution to the Equation of Motion 
In order to include the effects of a full elastoplastic consti

tutive relationship with strain-rate reversal, the moment-cur
vature relationship can no longer be considered linear and must 
be numerically evaluated. The differential equation of motion 
(Eq. (1)) is rewritten to explicitly include the moment as 

ar 
- + s d6l 7 + S U + -

d2u fa, 
de2 (5) 

where Mis the nondimensional moment, M = a/EhIm. Using 
central differences and an explicit time-integration scheme, Eq. 
(5) is rewritten as: 

Mj+i-2Mj + Mj. 

A02 + s 
"j+1 -lUj+Uj-i 

A62 

u^-2 t£+j£ 
+ I? J J de 

(6) 

where k is the time step, j is the spatial distribution step, and 
the right-hand side is evaluated analytically for harmonic initial 
shape imperfections. The solution is for the radial displace
ment, Uj + [, with s and Mj being evaluated from the previous 
step. The shell parameter, 5, is defined here as <jhha2/E},Iwhere 
the hoop stress, ah, is calculated from the hoop strain, 4 = 
uk, using the complete elastoplastic constitutive relationship 
including strain-rate reversal. 

Mj + 1 is evaluated numerically by first determining the cur
vature at the ring cross-section, KJ = \/a [(uJ+l-2uj + Uj^i)/ 
A62 + uj\k, dividing the cross-section into a number of strips, 
and evaluating the total strain in each strip as, e = e« + ZK 
where z is the distance from the neutral axis to the center of 
the strip. The stress is then calculated using the full elastoplastic 
material model and by tracking the strain history to include 
strain-rate reversal. Due to the nonlinear stress-strain model, 
an iterative procedure is required to find the location of the 
neutral axis to give force equilibrium in the cross-section. The 
force in each strip is a function of the total strain in the strip, 
which in turn depends on the position of the neutral axis. A 
considerable number of iterations are required when the strips 
are not all of the same modulus (in a state of elastoplastic 
transition or strain-rate reversal) and several schemes and var
iations in the number of strips and spatial and temporal step 
sizes were investigated to improve solution convergence. Once 
equilibrium is achieved to a given tolerance, the moment is 
calculated from the cross-section force distribution. 

Despite its limitations, the linear analytical solution indicates 
several important characteristics which must be incorporated 
into the numerical finite difference and finite element solu
tions. The initial buckling modes occur in higher harmonics 
than for static buckling. Equation (3) shows that n„ is a direct 
function of the shell parameter, s, and is of the order of 10 
to 50 for thick metal shells. This places two important re
quirements on the numerical solutions. First, a finely discre-
tized geometric mesh is required to model response correctly 
in the higher wave numbers. Depending on the order of the 
element used, several elements (or node points) per wavelength 
may be needed, resulting in models with discretizations of one 
hundred to several hundred nodes circumferentially. Second, 
the time integration scheme used must be capable of incor
porating motion at the frequencies associated with the higher 
wave numbers, which may be in the hundreds of kHz range. 
An additional factor, necessary for the investigation of the 
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effects of an elastoplastic strain-rate reversal material model, 
is sufficient integration through the ring thickness to model 
the complex stress distribution. These factors result in CPU 
intensive analyses where a large number of times steps will be 
required for large matrices. As is the case in the analytical 
solution, initial imperfections are needed in the numerical 
models to initiate buckling growth. Kirkpatrick and Holmes 
(1987) used an idealized distribution of modal amplitude, A,„ 
based on the results of shell imperfection surveys for thin shells, 
of the form: 

A„= .0?/), for n< 10 ^ 

A„ = —rs , for n>10. 
n ' 

This distribution was adopted for part of the present thick 
shell finite element study. Equation (7) does, however, give 
imperfections which may in practice be too large for thick 
shells, and a second model for radial imperfections 

An=.0lh, for n<10 ( 8 ) 

h 
An = —i, for «>10 

n 

was also used for comparison to analytical and experimental 
results. These imperfection amplitudes were used for all three 
solution methods: analytical, finite difference, and finite ele
ment, and were incorporated into the initial radial geometry, 
a(d), by the harmonic summation 

100 

a(d)= a +^jA„cos(nd + </>„), (9) 
n = 2 

where a random number generator was used for the phase 
angle, <j>„. 

Finite Element Solution 
Using the aforementioned numerical modeling considera

tions, ADINA was used to model planar rings of eight-node 
membrane elements in the R, 0-plane to represent the plane-
strain case of an infinite cylinder. ADINA, which has both 
explicit and implicit solution capability, was the only nonlinear 
code readily available to the author; no doubt other codes 
would also be suitable. A first set of analyses, with a half 
cosine initial velocity distribution (loaded on top half only), 
was used to investigate the various finite element solution pa
rameters of element discretization, element integration order, 
integration time step, and initial model imperfections. A sec
ond set of analyses was then undertaken with uniform axi-
symmetric initial velocity distributions for comparison to the 
analytical and numerical solutions to the equation of motion 
and some published experimental results. 

The finite element model used for the solution parameter 
study represented a cylinder of 6061-T6 aluminum with a mean 
radius of 152.4 mm and a thickness of 5.08 mm, to give a 
radius to thickness ratio of a/h = 30. The geometry was taken 
from a study by Lindberg and Kennedy (1975) in which ex
perimental results of the radial motion of the shell were pre
sented. Ishizaki and Bathe (1980), also used this test case for 
verifying the dynamic response (without buckling) of ADINA. 
The material parameters were modeled as a bilinear curve with 
Young's modulus = 69 GPa, Poisson's ratio = 0.33, yield 
stress = 285 MPa, tangent modulus = 900 MPa, and density ' 
= 2.7 grams/cm3. Lindberg and Kennedy (1975) and Kirk
patrick and Holmes (1987), used similar bilinear material curves 
in their numerical studies. 

As an initial test case for this current study, a "perfect" 
finite element model was analyzed with a half cosine initial 
velocity distribution of 103 ms~' amplitude. The finite element 
response showed no occurrence of buckling, with the ring 
deforming plastically and oscillating elastically as expected. A 

Fig. 1 Buckling mode formation of parameter study model with half 
cosine initial velocity distribution 
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Fig. 2 Modal growth for the parameter study mode^with 240 elements, 
4 x 4 integration, At = 1 /is, and imperfections in n = 2-100 

solution time step of the order of 1 /xs or less with implicit 
Newmark time integration gave good agreement with displace
ment results of the experiment and the analyses of the above 
references. 

To investigate dynamic pulse buckling, the same model was 
reformulated using Eq. (9) with imperfections in the initial 
radial coordinates defined by Eq. (7). This planar ring model 
consisted of 240 eight-node membrane elements and used 4 x 
4 Gauss integration. The deflected shape is shown at various 
time steps in Fig. 1. To investigate the growth of buckling 
modes, Fourier decomposition of the radial displacements was 
undertaken at several time steps. Figure 2 shows the growth 
of the Fourier components (wave numbers) as complex am
plitudes (modal displacement as a percentage of the ring thick
ness) at four time steps. For this first model, the predominant 
wavelength of response can be seen to increase (decrease in 
wave number, n) with increasing time of response. Initially 
both wave numbers 14 and 25 grow rapidly, but n = 25 ceases 
to grow past 100 fis, whereas n = 14 continues to increase in 
amplitude until 200 /xs where it reaches 14 percent of the ring 
thickness. This attenuation of the growth of the higher wave 
numbers is caused by the occurrence of strain-rate reversal and 
subsequent curvature rate and curvature reversal. The exper
imental results presented by Lindberg and Kennedy (1975) 
indicate predominant harmonics from n = 14 to 21 for tests 
with varying initial velocity amplitudes. The experiments used 
a perturbed initial velocity and no data on initial shape im
perfections are given. 

The model was re-analyzed using an integration order of 6 
x 6 with little difference occurring in mode shape or amplitude 
compared to the 4 x 4 model. An integration order of 2 x 
2 was also investigated. The 2 x 2 integration order was not 
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as capable as the higher integration orders of modeling vari
ation through the ring thickness, and thus the occurrence of 
strain-rate reversal is not modeled as effectively. This resulted 
in the higher numbered wavelengths having greater amplitudes 
and not being attenuated as quickly as they were in the higher 
integration order models. To investigate circumferential dis
cretization, the number of elements was increased from 240 
to 360 (uniformly distributed) with no appreciable difference 
in results. 

To investigate the effect of solution time step on the re
sponse, the 360 element model was analyzed with a time step 
of At = 0.1 IMS. This time step should allow response for this 
ring in wavelengths up to and in excess of n = 100. The modal 
growth results for At = 0.1 /us were in good agreement with 
the At = 1.0 us results, even for early time when the ampli
fication of higher wave numbers is most expected. It is inter
esting to note that both explicit central difference and implicit 
Newmark integration schemes were considered, and although 
explicit schemes are generally more efficient for impulse prob
lems, this was not the case here due to instability in the explicit 
solutions caused by the very small natural periods of the small 
length finite elements. With larger radius models, and hence 
longer element lengths, the explicit schemes can be used with 
time steps which make them more efficient. 

Since most of the response, even at early time, is in modes 
with n < 50, a 240 element model was created with initial 

imperfections in harmonics of n = 2 to 50. The modal growth 
plots for the n = 2 to 50 and the n = 2 to 100 models indicated 
little difference in buckling mode shape or amplitude. 

Comparison of Solutions 
A thick ring model of radius = 1524.0 mm, thickness = 

50.8 mm, steel bilinear material properties of E = 207 GPa, 
;- = 0.33, oy = 345 MPa, and Eh = 6900 MPa with von Mises 
yield criterion and isotropic hardening, an initial axisymmetric 
velocity of 102 ms -1 and initial shape imperfections modeled 
by Eqs. (8) and (9), was used to compare the three solution 
methods for dynamic pulse buckling discussed in this paper. 
It should be noted that the strain-rate insensitive, linear hard
ening model used for the numerical comparison is an as
sumption which may not truely represent steel cylinders. Figure 
3 compares the modal growth plots of this model for four time 
steps for the three solution methods; the analytical solution 
from Abrahamson and Goodier's theory (labelled THEORY 
in figure), the finite difference solution to the equation of 
motion (FDFS-SRR) and the finite element solution (FE-AD
INA). Figure 3 also shows the buckled shape (from the ADINA 
analysis) of the model at two time steps. The threshold between 
elastic and plastic behavior occurred at around 250 /is and 
significant occurrences of strain-rate reversal were noted by 
750 fis. Figure 4 shows the outer and inner fiber and the hoop 
strains as a function of time at the zero degree (top) location 
on the ring. A reversal in curvature for this location is evident 
where the outer and inner strain curves cross at about 500 ^s. 
Strain-rate reversal occurs at about 700 (is where the outer 
fiber strain line starts to decrease. This location is on a buckle 
whose radius of curvature is inside the ring (i.e., inside is under 
the highest compressive strain). These observations were made 
using the strain results from the finite difference solution which 
was easily modified to acquire detailed results. In fact, it was 
possible to monitor some stress, strain, and curvature results 
as the finite difference solution progressed, something which 
was not possible in the finite element solution with its much 
longer solution time and large volume of output requiring 
extensive postprocessing. 

From Fig. 3, the finite difference and finite element solutions 
show reasonable agreement for the response of the most am
plified harmonics up to about 1200 us. Harmonics above n = 
30 show poor agreement between the finite difference and finite 
element solutions, but good agreement between the finite dif
ference and analytical solutions. It should be noted that for 
this model, the shell parameter, s, which defines the wave 
number where the solution of the differential equation (Eqs. 
(1) and (2)) changes from hyperbolic to sinusoidal form, is 28. 
Both the finite difference and analytical solutions indicate a 
rapid drop in modal amplitudes beyond n = 30. 

The finite difference solution was only successful for a lim
ited time past the occurrence of strain-rate reversal and started 
to break down by 1200 \is. Curvature reversal in combination 
with strain-rate reversal produces a complex strain state which 
violates the assumptions of plane sections remaining plane and 
the neglect of variations in the tangential displacement which 
are used in formulating the differential equation and solution. 
It should be noted, from Fig. 4, that by 1200 us, the hoop 
strain has reached six percent and the inner fiber strain has 
reached 12 percent with considerable curvature occurring. The 
finite element method, which is not restricted by these as
sumptions, is required to further the solution. 

The analytical solution predicts amplitudes greater than the 
numerical solutions because it does not model elastic behavior, 
strain-rate reversal or curvature reversal. Including these ef
fects leads to a significant reduction in buckling amplitude and 
in the dominant wave number of the mode shape. Figure 5 
shows the modal growth (for the same time steps) of the an
alytical (a) and finite element (b) solutions after significant 
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strain-rate reversal has occurred, until the theoretical time of 
terminal hoop motion (when the inward hoop velocity first 
reaches zero). The analytical solution remains in the theoretical 
critical mode of ncr = 20 (Eq. (3)), and reaches an amplitude 
of 50 percent of the ring thickness. The finite element solution 
shows a drop in dominant mode to ncr - 14 which reaches an 
amplitude of 14 percent. Figure 6 shows the growth of four 
predominant wave numbers with time (to 3ms) from the finite 
element solution. Initially, n = 28 is dominant, followed by 
n = 22, then n = 18, and finally n - 14 takes over as the 
dominant wave number. 

In considering the analytical solution (Eq. (2)), it should be 
noted that the hoop mode (n = 0) is uncoupled from the 
flexural modes (n > 2) and hence no transfer of energy from 
the hoop mode can take place. As noted by Lindberg and 
Kennedy (1975), this causes a longer response time to terminal 
motion and allows the amplification functions of the analytical 

solution to expand for too long a time period producing un-
realistically large buckling amplitudes. The finite element so
lution does allow this energy transfer between the modes and 
the initial energy is dissipated much quicker than for the an
alytical solution. 

Figure 7 shows the effects of strain-rate reversal using the 
finite difference solution. Figure 1(a) is the finite difference 
solution neglecting the elastic unloading effects of strain-rate 
reversal where wave numbers 22, 28, and 32 are all amplified 
to over 30 percent of the ring thickness by time step 6. Figure 
1(b) is the finite difference solution including the effects of 
strain-rate reversal where mode 22 only reaches 20 percent of 
the thickness and the higher wave numbers of n = 28 and n 
= 32 only reach 15 percent by time step 6. Figure 7 cannot 
be compared to the results of Figs. 3 to 6 as it is for a different 
model and loading. 

Comparison to Experimental Results 
Abrahamson and Goodier (1962) present results of several 

pulse-buckling experiments. Comparison to these experimental 
results can only be qualitative as the initial geometric and 
axisymmetric shock load imperfections are unknown. Two of 
the experimental models, numbers 25 and 43, which were an 
aluminum cylinder of a/h = 9.9 and a steel cylinder of a/h 
= 35.6, respectively, were modeled with ADINA. The exper
iments were arranged to represent infinite cylinder, plane-strain 
cases and as such were modeled as two-dimensional rings. The 
experimental results are given as the observed number of crests 
and also as the average amplitude of the buckles (which is 
based on a different number of crests than the observed num
ber). These quantities are used for comparison to the ADINA 
modal displacement results, although they are derived differ
ently. Nominal initial velocities and material properties re-
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ported in the experimental study, and the imperfections of Eq. 
(8), were used in the ADINA analyses. 

The finite element analysis modal growth plot and the buck
led shape for cylinder number 25 is shown in Fig. 8. The 
experimental results given by Abrahamson and Goodier (1962) 
indicate an observed mode of nine waves and an average buckle 
amplitude of about 3.6 percent of the shell thickness (using 
seven waves in the average). The finite element results show 
predominant modal formation in n = 7-10 and an average 
amplitude of about six percent. The analytical solution (Eqs. 
(2) and (3)) predicts the critical mode to be n = 14 with an 
amplitude of 43 percent of the thickness by the time of terminal 
motion at 51 /us. Strain-rate reversal occurs much earlier than 
51 jus for this model and is the most likely cause for the an
alytical solution overpredicting the critical mode and greatly 
overpredicting the amplitude of response. The finite element 
solution gives a reasonable prediction of the experimental re
sults. The effects of axial strain in the experimental models, 
which were not truely infinite cylinders, the neglect of damping 
and the simplification of material properties in the finite ele
ment analysis, and the attraction of deformation energy to an 
imperfection produced by seams in the explosive and atten
uator layers, may have been responsible for lower experimental 
buckling amplitude values. 

The modal growth curves and the buckling mode shape for 
cylinder number 43 are shown in Fig. 9. The experimental 
results reported 28 as the observed number of waves in the 
response and gave an average amplitude of 10.7 percent of the 
shell thickness with 20 waves in the average. The dominant 
wave numbers of response in the finite element solution are n 
= 20 with a final steady amplitude of about 12 percent of the 
thickness, n = 16 at about 20 percent, n = 12 at about 24 
percent, and n = 8 at about 30 percent. The finite element 
response in n = 20 is in reasonable agreement with the ex

perimental results for average amplitude over 20 waves, but 
lower numbered waves have higher buckling amplitudes. This 
model also shows the decrease in wave number with time, 
starting off with dominant wave numbers of n = 20-24, drop
ping to n = 16 and finishing with n = 8 and 12. The analytical 
solution of Eqs. (2) and (3) predicts a critical wave number of 
n = 58 with an amplitude of 53 percent in this mode at 25 /xs 
and an impossibly large amplitude by the terminal motion time 
of 46 /xs. Strain-rate reversal occurs very early in the motion 
of this model which explains the failure of the analytical so
lution. 

Discussion and Conclusions 
The occurrence and fundamental characteristics of dynamic 

pulse buckling of thick rings (infinite cylinders) have been 
investigated using three different solution methods. The basic 
difference between behavior of thick rings as opposed to thin
ner rings is that significant strain levels are reached (well into 
the plastic flow regime) before appreciable buckling defor
mations occur. As the amplitudes and curvature of individual 
buckles increase, they reach the point of strain-rate reversal 
which causes elastic unloading. This greatly increases the mo
ment across the ring thickness which retards the further growth 
of buckling waves. Longer wavelength buckles, which have 
less curvature for a given amplitude than shorter wavelength 
buckles, experience strain-rate reversal later in the motion and 
overtake the shorter wavelengths as the dominant wave num
bers in the buckling response. The overtaking of short wave
lengths by longer wavelengths results in reversals of curvature 
and curvature rate, which when in combination with strain-
rate reversal and large values of strain, produces a very complex 
stress state in the ring. 

There was roughly an order of magnitude between solution 
times for the three methods, with the analytical taking a few 
seconds, the finite difference a few minutes to an hour, and 
the finite element taking several hours; the numerical solution 
times depending on the spatial and temporal discretization 
levels. 

The analytical solution presented by Abrahamson and 
Goodier (1962), reformulated for initial shape imperfections 
(Eqs. (1) and (2)), does not model elastoplastic behavior or 
strain-rate reversal and assumes continual plastic flow of all 
wavelengths. The critical wave number in the buckling mode 
shape (Eq. (3)) dominates the response throughout the motion. 
The analytical solution is valid before strain-rate reversal oc
curs (except for the omission of elastic behavior), but for rings 
with initial shape imperfections of reasonable amplitude (such 
as Eqs. (7) an (8)), strain-rate reversal occurs early in the ring 
motion, well before the time of terminal hoop motion (first 
occurrence of zero velocity in the hoop motion). The time of 
terminal motion is overestimated by the analytical solution as 
it does not model energy transfer from the hoop to the flexural 
modes. Solutions using Eq. (2) until terminal motion is reached 
can considerably overestimate the amplitudes and predominant 
wave numbers of response. Modifications to the analytical 
solution to include elastic behavior were considered (Lindberg 
and Florence, 1987) by numerically integrating the equation 
of motion with the hoop stress and the modulus as functions 
of time. This approach improves the early time performance 
of the analytical solution, but requires the entire ring to be of 
the same modulus at a given time; a restriction which the finite 
difference solution, via the strip integration, does not have. 

The finite difference solution to the equation of motion 
allowed a limited investigation of elastoplastic and strain-rate 
reversal effects. This solution broke down at high strain levels 
in attempting to model the complex stress state resulting from 
curvature reversal producing a second occurrence of strain-
rate reversal at a cross-section. The finite difference solution 
would require the inclusion of the tangential displacement vari-
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able and some additional nonlinear terms in the equation of 
motion to model further dynamic buckling response of the 
ring. This would considerably increase the difficulty and com
plexity of the solution which, in light of the success of the 
finite element method, would not be warranted. The relative 
simplicity of the finite difference solution in both solution time 
and ease of obtaining results at any point in the ring, proved 
to be very useful in determining the stress and strain state, 
until it reached its computational limits. 

The ADINA finite element solutions proved to be successful 
and reasonably efficient in predicting dynamic buckling re
sponse. The complex stress State resulting from strain rate and 
curvature reversals was successfully modeled. The require
ments of modeling initial shape imperfections to produce the 
buckling mode, time and geometry discretization to allow for
mation of the buckling mode, and sufficient variation of strain 
through the ring thickness (via integration points) to model 
strain-rate reversal, have been demonstrated. The latter re
quirement is especially important in thinner shells where strain-
rate reversal occurs quickly and extensively and models using 
shell elements with single integration points through the thick
ness will not adequately model the proper response. There was 
reasonable agreement of the finite element results with the 
published experimental results, certainly much better than the 
analytical solutions provided. 

The finite element solution to dynamic buckling can be ex
tended to other types of structures and will lead to designs 
which can better resist the destructive results of impact loads. 
As discussed, the prediction of dynamic buckling requires a 
high level of finite element modeling, more so than what may 
be used for general stress analysis. 
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Initial Development of 
Microdamage Under Impact 
Loading1 

In this paper, the initial development of microdamage in material subjected to 
impulsive loading was investigated experimentally and analytically with controllable 
short-load duration. Based on a general solution to the statistical evolution of a 
one-dimensional system of ideal microcracks, a prerequisite to experimental inves
tigation of nucleation of microcracks was derived. By counting the number of 
microcracks, the distribution of nucleation of microcracks was studied. The law of 
the nucleation rate of microcracks can be expressed as a separable function of stress 
and cracksize. It is roughly linear dependence on loading stress. The normalized 
number density of microcracks is in agreement with that of a second-phase particle. 

1 Introduction 
Spallation, occurring in solids subjected to impact loading, 

usually results from accumulation of microdamage. Generally 
speaking, the microdamage is created by tensile stress waves, 
which form when compressive waves reflect at free surface, 
corners, or interfaces adjacent to media with low-wave imped
ance. Closeup observations have revealed that the microda
mage is produced by means of nucleation, extension, and 
coalescence of microcracks or microvoids (Curran et al., 1987). 
The idea that coalescence of microcracks or microvoids should 
be responsible for complete spallation was suggested long ago. 
However, the evolution of microdamage, especially the tran
sition from gradual accumulation of microdamage to complete 
failure of materials, has not been clearly interpreted yet, either 
experimentally or theoretically. 

In a previous paper (Shen et al., 1986) it has been shown 
that the collapse of residual strength of damaged samples ap
pears to be catastrophic at a certain level of microdamage. The 
specimens were cut from rolled aluminum alloy plate and tested 
under planar impact loading with a light gas gun. Then the 
central part of a half of an individual impacted specimen was 
statically tested to examine the residual ultimate strength of 
the damaged sample. Another half was sectioned, polished, 
and observed with a microscope to investigate corresponding 
microdamage. It seems that an abrupt loss of residual ultimate 
strength happens at / ' / / ~ 0.7, where /' is the total length of 
microcracks adjacent to a would be separation line and / is the 
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length of the observed section (Fig. 1). In this diagram the 
damage function is defined by F = 1 - or/oi,, where o> and ab 
are the residual ultimate tensile strength of impacted sample 
and the bulk strength of the virgin material, respectively. 
Clearly, the sharp loss of residual ultimate strength of damaged 
material manifests a critical state of microscopic damage. In 
this regard damage fracture transition represents a class of 
material instability. 

For the sake of understanding the instability, it is necessary 
to determine the variables which can properly characterize the 
accumulation of microdamage. As the basis of the study, this 
paper restricts consideration to the initial development of mi
crodamage, i.e., the nucleation of microcracks under planar 
impact loading, because spallation occurring under this con
dition causes planar penny-shaped microcracks parallel to each 
other. Thus, the configuration can simplify the problem as 
one-dimensional, since only one variable is needed to char
acterize the microcracks. 

2 General Solution 
A general framework concerning the statistical evolution of 

microdamage has been put forward in previous papers (Bai et 
al., 1988). Here, a brief introduction will be given, particularly 
for the case of a one-dimensional system of ideal microcracks. 

1-0 

o. 
0-6 

' 0-1, 

0 2 

0' 02 0.4 06 08 
' / l 

Fig. 1 Relationship between macroscopic damage function F = 1 
-a,I ub and total length of microcracks by observed section length /'/ 
/(from Shen et al., 1986) 
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Microcracks are termed as ideal provided they satisfy the 
following conditions: (1) nucleation and extension of micro
cracks are independent of each other and (2) nucleation and 
extension of an individual microcrack are governed by its mic
roscopically local conditions. In addition, it is assumed that 
each microcrack can be characterized by a single variable in 
phase space. For example, a penny-shaped crack can be de
scribed by its area or radius. Obviously, this assumption can 
significantly simplify the formulation of laws of nucleation 
and extension of microcracks. 

The governing equation of the statistical evolution of a one-
dimensional system of ideal microcracks has been derived (Bai 
et al., 1988; Ke et al., 1990; Bai et al., 1991) in a phase space 
and can be written as 

dn d(cn) 
T7 + — 7 — = nN dt dc (1) 

where / is time; c is the length scale variable of microcrack; 
c is the extension rate of an individual crack; n is the number 
density of cracks, i.e., the number of cracks per unit physical 
volume per unit crack length; and nN is nucleation rate of 
number density of cracks, i.e., nucleating number of cracks 
per unit physical volume per unit crack length per unit time. 
The details of the derivation of Eq. (1) can be found in the 
paper of Ke et al. (1990) and Bai et al. (1991). Clearly, the 
dynamic laws for nN and c are dependent on loading stress 
a(t) and material properties in addition to the microcrack 
variable c, but are independent of the number density n, in 
the system of ideal microcracks: 

n = n(c, a(t),Xm) (2) 

b = c(c,o(t),Xm) (3) 

where Xm are material parameters. 
The general solution to Eq. (1) has been obtained by Ke et 

al. (1990) and expressed in the following form: 

n(c, t)--
nN{c)t c < b 

1 T , , 
— nN(c )dc o b 
c) J, 

(4) 

A( •j(c, 0 

provided the loading stress a remains constant. Hence, a and 
Xm are not denoted explicitly in (4). Here, c is defined by 

(5) 
0 c < b 
A(c) c > b 

where b denotes a size threshold of extension of microcrack 
and r; is defined in the following way: 

dc' -r (6) 
Ji)(c o A(c ) 

When c =» b, the asymptotic behavior of extension rate A (c) 
determines whether a stationary solution exists in the range of 
b < c < c0, where c0 is defined by 

= p (" dc' 

The stationary solution to Eq. (1) manifests the saturation of 
the number density of microcracks (Ke et al., 1990). But in 
this paper we have to focus our discussion on the nucleation 
of microcracks. The readers, interested in the theoretical detail 
of the evolutionary solution to Eq. (1), can refer to the Ke et 
al. (1990) paper. 

3 Experimental Procedure and Distribution Function 
It was pointed out in the previous section that two dynamic 

laws, nucleation and extension of microcracks, can substan
tially affect the evolution of microcracks. There is a simple 
extension law derived by Berry (1960) for a crack in a linear 
elastic medium. Of course one cannot expect that the micro
cracks in the micrometer range are truly brittle. But before 
realistic models of microcracks are developed, Berry's formula 
can be adopted as an operational expression of an extension 
law. 

On the other hand, nucleation laws of microcracks proposed 
hitherto are mostly indirect (Curran et al., 1987; McClintock, 
1973; Batdorf, 1975). Due to the significance of the function 
nN in the evolution of microcracks, for example in expression 
(4), the determination of the nucleation function was thought 
to be a primary task in the experimental study. But extracting 
the information on the nucleation of microcracks from ex
perimental observations is difficult because one cannot observe 
straightforwardly the nucleation of microcracks. In order to 
unveil the nucleation law of microcracks let us examine the 
solution (4)-(6) of the evolution of microcracks. The concrete 
aim is to guide the design of experiments. 

For a very short stress pulse a(dt), the expression (6) can be 
rewritten as 

il=c-A(c)-5t. (7) 

In fact, ?J = TJ(C, t) represents the size of microcracks at ? = 0, 
for the crack of length c at time t (Ke et al., 1990), if it could 
contract according to the same extension law (5). Substitution 
of (7) into (4) gives following approximate solution for a short 
stress pulse, 

n(c, bt) -
( nN(c)-bt c < b 
[nN(c-d-A{c)'bt)'bt c>b 

where 6 is a parameter 0 < d < 1. 
If we intend to express the nucleation rate nN{c) as 

nN(c). 
n{c, bt) 

'~ bt ' 

(8) 

(9) 

the following inequality should be satisfied: 

c>>6'A(c)-bt. (10) 

The typical extension rate of microcrack A(c) could be esti
mated by observing the length scale of microcracks in the 

N o m e n c l a t u r e 

A(c) = extension rate of individual 
crack when c > b 

b = threshold of extension of mi
crocrack 

c = length scale variable of mi
crocrack 

c = extension rate of microcrack 
n = number density of micro

crack, i.e., number of micro
cracks per unit physical 
volume per unit crack length 

nN = 

N = 

t = 

nucleation rate of number 
density of microcracks, i.e., 
nucleating number of cracks 
per unit physical volume per 
unit crack length per unit 
time 
total number of microcracks 
per unit volume 
time 

X,„ = material parameters 
p = normalized number density 

of microcracks 
a = stress 

Subscripts 
p = variable on sectioned surface 
N = variables describing nuclea

tion of microcracks 
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Fig. 4 Typical distribution of microcracks

10

mm thick aluminium target. The details of material and testing
procedure are given in the papers of Luo (1988) and Shen et
al. (1991). The tested specimens were sectioned and polished
carefully. The observations were conducted with an S-570
Scanning Electron Microscope and an Image Analysis System.
Particularly, the statistics of microcracks, such as the visual
length, orientation, number, etc., can be readily obtained by
means of the instruments. Figure 4 shows a typical distribution
of microcracks formed in the aluminum alloy target under the
stress pulse loading with a duration of about 100 ns. The
distribution of microcracks on a polished plane shows the
following several distinct features with respect to visual length:
(1) there is a peak in the count at some crack length;
(2) the count tends to zero when crack becomes too long or
too short; and
(3) the distribution curve is not symmetrical.

For comparison, the normalized distribution of the number
density of microcracks p (defined as pp(c) = np(c)/j ;r
np(c)dc) where subscript p denotes the parameters on sec
tioned surface and also that of second-phase particles, on a
polished section of the sample, are shown in Figs. 5 and 6.

The two distributions are qualitatively similar to each other.
In addition, the locations of the two peaks in the two curves
are in the same range, i.e., 2-5 ~m. Furthermore, the value of
crack length seems to be reasonable for the requirement for
nucleation study, see expression (11). All of these offer cor
roborative evidence that the observed distribution is a proper
representation of the nucleation of microcracks.

The data of the normalized distribution of number density
of microcracks p can be fitted to Weibull's function as

pp(c) - cm-loexp(-clll ) (12a)

or a function similar to Rayleigh's function

pp(c) - clllo exp(-c2) (12b)

(Fig. 5), where subscriptp denotes the quantities on a sectioned
surface.

40

30

4 Law of Nucleation Rate
Before continuing, two points should be made. Since the

difference between the number density of microcracks n (c),
i.e., the number of cracks in unit physical volume and unit
phase space volume, and the corresponding variable on sec
tioned surface np (c) depends on a integration with respect to
crack length scale only, the prerequisite to the nucleation study,
i.e., formulas (9) and (11) stilI works for np(c). Secondly, we
prefer to retain the obtained data on nucleation in its original
form, namely the distribution function on a sectioned surface,
because all simple transformations of surface counting into

Buffer

St~el stopper

Target holder

Target ring

Epoxy resin

Barrel Sabot Flyer

Fig. 2 Set up of light gas gun

specimen and loading duration. It is observed that the crack
extension D.C of about 10 ~m was produced during loading
time of about I ~s. The typical extension rate, therefore, would
be 10 ~m/~s under the stress pulse loading.

Hence, if the tests for nucleation study are carried out with
loading time of about 0.1 ~s, the expression (10) leads to

c> >/IoA(c)oat - ex I~m. (11)

This is, if the nucleated size of microcracks is several microm
eters, one can apply the observed number density of micro
cracks n (c, ot) and expression (9) to obtain the nucleation rate
of microcracks nN(c). Of course, the prerequisite is that the
loading time must be submicrosecond.

An experimental method, i.e., the short stress pulse tech
nique, was developed in our laboratory (Shen et aI., 1985). A
thin metal foil attached to a hollow projectile with low imped
ance support can create a one-dimensional stress pulse with a
submicrosecond duration in target when impact between the
target and the foil is conducted by making use of a light gas
gun (Fig. 2). In the present study, stress pulses of about 100
ns duration were applied to examine the nucleation of micro
cracks. Figure 3 gives a picture of microcracks under the load
ing condition.

All the data listed in this paper were taken from a series of
impact tests, in which a O.I-mm thick nickel flyer strikes a 5-

Fig. 3 Microcracks formed in specimen under short stress pulse load·
ing
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volume distribution are based on some further assumptions 
on cracks (Seaman et al., 1978). We believe that the original 
form of nucleation distribution function may be more helpful 
for further examination. 

Now, we are quite convinced that the data obtained by short 
stress pulse technique are a fair representation of the nucleation 
of microcracks. However, in practice we need a concise expres
sion of the law of nucleation rate. Then the question is how 
to determine the expression from obtained data. It has been 
observed that the cracking is mostly confined to the second-
phase copper particles in the aluminum alloy. More impor
tantly, for second-phase particles of all sizes, only part of them 
became debonded. To look for the stress dependence and size 
distribution of nucleation of microcracks, we should once more 
turn to examine the normalized distribution of the number 
density of microcracks. Figures 5(a) (pp(c)) presents the ex
perimental normalized number density of microcracks where 
np is the number density on a sectioned surface and TV is the 
sum of the microcracks. The loading duration ranges mainly 
from 0.14 /xs to 0.17 fts and the stress amplitude from 2.5 to 
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Fig. 5(a) Experimental data 

0.145 / i s , 
0.157 u s , 
0 .161 / i s , 
0 .162 / i s , 
0 .168 /is, 
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6,487 MPa 
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7,460 MPa 
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c rack l eng th (/im) 

Fig. 5(6) Fitting by c™ exp(- Be 2) , similar to Rayleigh's distribution 

7.5 GPa. Figures 5(b) and 5(c) present two fittings. We also 
provide a normalized cumulative measure, i.e., the cumulative 
number of cracks per unit area divided by the total number 
of cracks per unit area. This curve shows better fitting, but 
disguises some scatter and deviations (Figs. 5(b), 5(c), and 
5(d)). According to the definition of pp and the approximate 
solution (8) and (9), we can derive 

pp(c, t, a) = 
np(c, t, a) _nNp(c, a)St 

~T^ 7 7 = NNp(a)5t 
MP(C, t, a)dc 

Jo 
_nNp(c, a) 
~~ NNp(a) 

= pp(c, a), (13) 

T= 0.145 / i s , 
T= 0.157 / i s , 
T= 0.161 fis, 
T= 0.162 lis, 
T= 0.168 /is, 
T= 0.172 / i s , 
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Fig. 5(c) Fitting by Weibull's distribution, cm _ 1 exp(- Bcm ) 
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Fig. 5(d) Cumulative size distribution of cracks 
Fig. 5 Normalized distribution of number density of microcracks, PP , 
showing pp (c, a) is insensitive to loading stress, pp (c, a) ~ pp (c) 
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Fig. 6 Distribution of the second-phase particles; ns: number of the 
second-phase particles per unit area per unit particle length on the 
sectioned surface; Ns: total number of the second phase particles per 
unit area on the sectioned surface 
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Fig. 7 Relation between the nucleation of microcracks and the loading 
stress 

where 

NN(a) = ( nN(c, &) dc. (14) 

Again, by examining Fig. 5 carefully, one can observe that pp 

can be expressed as a function of a single variable (crack length 
c) irrespective of stress a in the experimental range, namely 

pp(c, a) ~ pp(c). (15) 

Therefore, substitution of formula (15) into (13) gives the 
nucleation rate of microcracks nNp 

nNp(c, a) = NNp(o)'p(c). (16) 

Furthermore, the data fitting of NNp(a) gives a roughly linear 
stress dependence. See Fig. 7 (NNp(a)) 

(17) NNp(u) - ( - - 1 

According to formulas (12), (13), (16), and (17), one can deduce 

(18) nNp(c, a) = K0* I - - 1 ) -ppic). 

From (12) it follows that 

nsPio,c)=K.l--l).<r exp(-B-cT) (19a) 

nNP(<J, c)=K> 1 )'cfn-exp(-B-ci) (19b) 

where K0 and K are coefficients. For our experimental range 
a = (2500 ~ 7500 MPa), t = (0.14 ~ 0.17 /ts). These results 
become 

nNp = K'[ 1 
\0o 

e x p l - l - (20a) 

where 

K = 971 number/(mm •^im-/is) 
ff0 = 2689 MPa 
c t = 4.27 \xm 

m = 2.33 

or 

where 

"» = «'£-') £ exp 

K = 1042 number/(mm •/unv/xs) 
ff0 = 2689 MPa 
c„ = 3.3 \un 

(20b) 

m 1.72. 

The stress dependence (16) is consistent with macroscopic and 
empirical cumulative for incipient spallation (Luo, 1988) 

a 

450 
— - 1 Af=1.21 (21) 

where the stress is in MPa and time is in /*s. On the other hand, 
according to (17) and (18), the integration of solution (8), with 
respect to crack length c, can give a linear dependence of the 
total number of microcracks on tensile stress as well as on the 
loading time (Bai et al., 1991) 

- - 1 I At 
o0 

Np, (22) 

where Np = J " npdc is the total number of microcracks over 
a unit area. Clearly, for incipient spallation, the macroscopic 
experimental criterion (21) and microscopic theoretical deri
vation (22) are in good agreement. 

5 Disscussion 

Complete spallation seems to be a sort of material instability, 
i.e., the evolution and then abrupt transition into large-scale 
coalesence of numerous microcracks. To understand this kind 
of micro-macroscopic material instability, the following pre
liminary and essential facts have been explored: 

1 Based on a general solution to the statistical evolution 
of a one-dimensional system of ideal microcracks, the initial 
development of microdamage, under planar impacting load, 
can be analyzed. Moreover, a prerequisite to experimental 
investigation of nucleation of microcracks was derived. 

2 A short stress pulse technique developed by means of a 
light gas gun was applied to meet the prerequisite and to obtain 
the data relevant to the nucleation of microcracks. 

3 The normalized number density of microcracks was found 
to have a asymmetric distribution, which is in agreement with 
that of second-phase particles. 

4 Furthermore, the normalized number density of micro
cracks shows approximate stress-independence in the experi-
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mental range. Therefore, the law of nucleation rate of 
microcracks can be expressed as a separable function of stress 
and crack size. 

5 The nucleation rate of microcracks was shown, to be, 
by experimental results, of roughly linear dependence on load
ing stress. 

6 Above all, the nucleation rate of microcracks can be 
expressed in the form 

nNp 1 •/! 

An illustrative data fitting of the nucleation rate of microcracks 
on the sectioned surface in an aluminum alloy was given. 
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Equation (15) should read as follows: 

A(X;a,7) = 2X(2 + X)(l - tv)2sin27[X(2 + X)sin27 - cos27] 

+ 2X(2 + X)(l + a)2sin2ycos2y 

+ 2X(2 + X)(l - a)sin27(cos[2(l + X)y] + cos[2Xvr - 2(1 + \)y]} 

+ X(l + a)sin27 (sin[2(l + \)y] - sin[2Xir - 2(1 + X)7]) 

- 4sin[(2 + X)y]sin[X7r - (2 + X)y] { COSXT + acos[X(7r - 2?)]} 

(15) 
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A Theory for Transverse Deflection 
of Poroelastic Plates 
A theory is presented for the bending of fluid-saturated poroelastic plates. The 
governing equations, based on linear consolidation theory, reduce to a single fourth-
order integro-partial-differential equation to be solved for the transverse displace
ment of the middle surface. This equation resembles the classical plate equation but 
has an added convolution integral, which represents the viscous losses due to the 
flow of fluid relative to the solid. Laplace transform and perturbation solution 
methods are presented. The Laplace-transformed poroelastic plate equation and the 
first-order equation of the perturbation expansion have the forms of the standard 
plate equation. Results are given for a simply-supported rectangular plate with a 
time-dependent surface pressure. 

Introduction 
Recently, interest has intensified concerning the influence 

of poroeleasticity on the mechanical behavior of biological 
tissues. In general, poroelastic analyses have been based on 
three-dimensional mixture theory (Bowen, 1976) or three-di
mensional consolidation theory (Biot, 1941,1955, 1962,1972). 
Many biological structures, however, are fluid-saturated mem
branes, beams, plates, or shells. Examples include arteries, 
hearts, diaphragms, skin, bones, and bladders. One and two-
dimensional poroelasticity theories would be useful for these 
and other related mechanics problems. 

To date, few papers have addressed sub-three-dimensional 
theories for poroelastic media. Using the linear consolidation 
theory, Biot (1964) examined the problem of cylindrical bend
ing and buckling of a porous plate due to end loads, and 
Nowinski and Davis (1972) presented a poroelastic beam theory 
for application to bones. These linear theories are necessary 
prerequisites to the development of nonlinear theories, which 
are even more scarce. Using the mixture theory, Rajagopal et 
al. (1983) presented possibly the only nonlinear theory for 
poroelastic spherical membranes. 

This paper extends the analysis of Biot (1964) to obtain a 
linear poroelastic plate theory. The development considers 
quasi-static transverse displacement of a porous, rectangular 
elastic plate of dimensions a x b and uniform thickness h«(a, 
b) that is saturated with a viscous fluid (Fig. 1). Interconnected 
pores contribute to the porosity <t>, the ratio of pore volume 
to total volume. Transverse pressures p = P\ {x, y, t) and p 
= Pi(x, y, t) act on the upper (z = - h/2) and lower (z = 
h/2) plate surfaces, respectively. 
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Fig. 1 Poroelastic plate geometry 

Governing equations are developed using the methods of 
the classical linear theory for bending of thin elastic plates 
(Szilard, 1974). Except for the boundary conditions, which are 
found from the principle of virtual work, the equations are 
developed on mechanical grounds. This approach enhances 
physical insight while laying the foundation for future non
linear theories, including those for large strain. The present 
theory is based on the following assumptions: 

1 Normals to the middle surface of the solid skeleton (z 
= 0) remain straight and normal during deformation. 

2 The plate is in a state of approximate plane stress, i.e., 
the total stress TZ = 0. 

3 In-plane fluid-velocity gradients relative to the solid are 
small compared to the transverse fluid-velocity gradient. 

The first two assumptions are the well-known Kirchhoff hy
potheses (Szilard, 1974) and the third is a consequence of the 
transverse resistance to flow being much smaller than the re
sistance parallel to the middle surface. 

The primary product of this study is a single fourth-order 
integro-partial-differential equation to be solved for the mid-
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die-surface transverse displacement w0. This poroelastic plate 
equation has the same form as the classical plate equation with 
an added convolution integral, which is coupled to the time 
derivative of w0 and represents the resistance due to the flow 
of fluid relative to the solid. 

We investigate two methods for solving the equa
tion: Laplace transforms and perturbation series. Taking the 
Laplace transform puts the poroelastic plate equation into the 
form of the standard plate equation, with the transform of w0 

entering only as the argument of the biharmonic operator. The 
first-order perturbation equation also has this form. Results 
are presented for a simply supported rectangular plate with a 
time-dependent surface pressure. 

Geometric Relations 

Let us(x, y, z, t) = i?ex + ife 
+ i/ey + 

.y + w'e,. and uJ (x, y, z, t) 
v/e7 be the solid and fluid displacements, 

respectively, at time t relative to the Cartesian coordinates (x, 
y, z). The transverse displacement of the middle surface is 
Wo(x, y, t) = ws(x, y, 0, t). Then, assumption (1) gives the 
in-plane solid displacements 

if=-zw0,x, vs=-zw0,y (1) 

and the solid strains 

eSX=^ = ZKX, ey=tfy = ZKy, txy = ~ ( ifj + v'x) = ZKxy 

es
z = ^z, exz = eyz = 0 (2) 

where the middle-surface curvatures are 

*X = - WQyXX, Ky = - WQ:yy, KXy = ~ Wfl^. (3) 

In this paper, a comma denotes differentiation with respect to 
the follower coordinate, and the components of fluid strain 
do not enter the analysis directly. 

Like the classical plate theory, the present poroelastic plate 
theory ignores the stretching of normals in geometric consid
erations (es

z = 0) but relaxes this constraint in the analysis of 
stress, including the fluid pressure. For a thin plate, this in
consistency produces small errors. 

Equilibrium 

In Biot's (1941, 1955, 1962) linear consolidation theory for 
poroelastic media, the total stresses per unit area of bulk ma
terial are 

Tx = °x-4>Pf> Ty = Oy-<t>pf, Tz = oz-<t>pf 

TXy ~ °xyi 7xz = °xz> 7yz = &yz (4) 

where the at and a^ are partial stresses acting on the solid 
component and/?/is the pore pressure. With body and inertial 
forces neglected, the equilibrium equations are 

7x,x ' 7xy,y ' Txz,z = " 

Txy,x ' 7y,y ' Tyz,z ~" ^ 

Txz,x ~t~ TyZiy + TZiZ U. (5) 
On the faces of the plate, the total stresses must satisfy the 
boundary conditions 

h 

Z=-~: Tz=-pU Txz=Tyz = 0 
h 

Z = ~ : Tz=-p2, TXz = Tyz = 0. 

(6) 

Integrating Eqs. (5) across the plate thickness and satisfying 
the boundary conditions (6) yields 

NXtX + NXy,y=0 

NXy,X + Nyty = Q 

Qx,x+Qy,y=-P0 (7) 

where p0 s px — p2. In addition, multiplying Eq. (5)^2 by z 
and integrating over the thickness gives 

(8) 
Mx,x + MXyiy=Qx 

MXy,X + My,y = Qy ' 

in which Eqs. (6) again have been used. In these equations, 
the stress and moment resultants are 

(NX, Ny, Nxy, QX, Qy) = \ ( TX, Ty, Txy, T„, TyZ)(lZ 
(9) 

(Mx, My, Mxy) •- \ (jX, Ty, rxy)z dz 

per unit length of the middle surface, where J = Ji/,/2-

Constitutive Relations 
The constitutive relations for a fluid-saturated poroelastic 

solid are (Biot and Willis, 1957) 

TX = 2/xeJ + Xes — apf 

Ty = 2\i.ty + \es — apf 

Tz = 2jxes
z + \t ~ apf 

Txy ~~ ^fl^xy 

pf=F({-aes) (10) 

where X and /x are the Lame constants for the solid skeleton, 
and a and F are constants which can be determined from 
compressibility tests. Furthermore, 

f - W e ' - e ' ) (11) 

where 

es=V-us = ex + eSy + es
z, / = V - l / (12) 

are the solid and fluid dilatations. Note that since transverse 
shear strains are neglected, the stress-strain relations for TXZ 

and ryz are omitted. 
After substitution of Eq. (12)i into (10)3, the plane stress 

condition TZ = 0 (assumption (2)) gives 

es
z = A-l[apf-Mex + ey)] (13) 

where 

A = \ + 2fi (14) 

is the aggregate elastic modulus. Inserting Eq. (13) into Eq. 
(10),,2 then yields 

E 
Tx = Y^(ex + vey)-Bapf 

Ty = - 2{ey+ves
x)-Bapf 

where 

E 4/*(X + n) X 
v — 

2/x \-2v 
2(X + /i)' A ~~ l-p' 

(15) 

(16) 
1 - / A 

in which £ and v are the Young's modulus and Poisson's ratio, 
respectively, for the solid skeleton with pf = 0. Next, substi
tuting Eq. (13) into Eq. (12)i gives 

es = ap/A+B(es
x+ey), (17) 

and putting this expression into Eq. (10)5 yields 

Z=Ppf+aB(<?x+4) (18) 

where 

I3 = a2/A + UF. (19) 

Finally, after substitution of Eqs. (2), (10)4, and (15) into 
(9), integration over the shell thickness provides the poroelastic 
plate constitutive relations 
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Nx=Ny = BaN,Nxy = 0 

Mx = D(Kx + PKy) + BaM 

My = D{Ky+ VKX) + BaM 

Mxy = D(\-v)Kxy 

where 

D = -
Eh5 

(20) 

(21) 
12(1 - / ) 

is the flexural rigidity of the plate solid skeleton. In addition, 

N= - \p/dz, M= - \pfz dz 

and the forcing term is 

v(x, y, z, t)= -czV2
0w0(x,y, t) c = aB/(3 (27) 

where vjj = (d2/dx2) + (d2/dy2). Equation (25) couples the 
mean plate curvature to the pore pressure. Since strong trans
verse gradients in pore pressure can occur, we solve Eq. (25) 
in its three-dimensional form, rather than integrating it over 
the plate thickness. 

In this paper, we consider combinations of the following 
boundary conditions: 

2 : P/=Pi(x,y,t) (Al) 

(22) 
P/.z = 0 (A2) 

are the effective stress resultant and bending moment due to 
the variation in pore pressure across the plate thickness. For 
a solid plate, a = 0 and Eqs. (20) reduce to the constitutive 
relations of classical plate theory. 

Fluid Flow 
In the consolidation theory of Biot (1941, 1962), the flow 

of viscous fluid through a porous elastic solid is governed by 
Darcy's law 

— Vpf=4>(iis-iiJ) 
V-S 

(23) 

z = 2 : Pf=Pi(x,y,t) (Bl) 

P/,z = 0 (B2). (28) 

Conditions (Al) and (Bl) correspond to permeable plate sur
faces, while (A2) and (B2) give impermeable surfaces (ws = 
v/, see Eq. (23)). 

A separation of variables solution to Eq. (25) can be found 
in the form 

oo 

pj{x, y, z,t) = % (x, y, z, 0 + 5 ] A«(X> y> ()<t>„(z) 

£ = (Pi(x,y, t) 

'o 

\Pi(x,y,t)\^--\+p2{x,y,t)0-2 + -\ for BC (Al)-(BI) (#1) 

for BC (A1)-(B2) (#2). 

for BC (A2)-(B2) (#3) 

(29) 

where k is the permeability, u,is the fluid viscosity, V m etf/ ™e \ g T f
t h e e i g e n f u n c t l ° n s *« a n d t h e corresponding 

dx) + ey(d/dy) + ez(d/dz), and dot denotes differentiation with "fenVa1,^ \" ^ various combinations of the boundary con-
respect to time. Taking the divergence of Eq. (23) and using d l t l o n s ( 2 S )- l n a d d I t l o n -
Eq. (12) gives 

V-f 
Vapf= f (24) 

A0(x,y)=c0(x,y) 

A„(x,y, t)=cn(x,y)Gn(t) 

\ Gn(t-r)a„(x, y, T)dr, n = l,2, . . . (30) with f defined by Eq. (11). Since relative in-plane fluid-velocity 
gradients are neglected (assumption (3)) Eq. (23)i implies that w h e r e t h e d o t " d e n o t e s differentiation with respect to r, the 

^ l \ fe'^TrJfe' • T h C n ' s u b s t l t u t l o n o f Ec»s- <2>' <3>> c„(x, y) are functions to be determined by the initial condi-
and (18) into (24) yields 

KPf,zz=Pf+V (25) 

in which the effective plate permeability is 

K=k/n/P (26) 

Table 1 Eigenvalues and eigenfunctlons 

(31) 

BC 

1 

2 

3 

A„ 

X 

T 

00 

0 

0 

1 

K 

sin ^ cos \nz + cos ^ sin Anz 

sin ^ cos A„2 + cos ^ sin A„z 

cos ^ cos \nz + sin ^~ sin \nz 

tions, 

Gn(t)=e-'°:'> 

is the relaxation function, and 

a„(x,y, t)=—r \lv(x,y,z, t) + $(x,y,z, tm„(z)dz. 
n j ( 3 2 ) 

Given the boundary conditions, Eq. (32) can be integrated 
using Eqs. (27) and (29)2 and Table 1. The result can be ex
pressed in the form 

a„(x,y, t)=ri„VoW0(x,y, t) + tnW\(x, y, t),p2(x,y, t)] 
(33) 

where 

Table 2 Terms of pore pressure solution 

BC 

1 

2 

3 

(2*n,l 

6. 

- $»:o)Pl ~ (2$„ 

-MnflPi 

0 

l + $n io)p2 

*n;0 

2(A;)~V 

2(A"„)-'s2 

0 

$„;1 

(A;)~ 2 C(2 5 - X'nc) 

-{X'„)~2s(2s - \'nc) 

{\'n)~
2s(2s - X-„c) 

*o 

KP1+P2) 

Pi 

0 

>!' , 

Xi(Th -Vi) 

0 

0 

A; = \„h; s = sin(A;/2), c = cos(A*„/2) 
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T)„ = 2C/!*„;1. 

The quantities £„ and (for k = 0, 1) 

* „ • * - = /* - ( * + ! > 4>n^dz, 

(34) 

(35) 

are listed in Table 2 for specified boundary conditions on the 
upper and lower plate surfaces. Thus, given ~px and p2, a„ is 
an explicit function of w0. Then, on substitution of Eqs. (30) 
and (33), Eqs. (29) provide Pf in terms of a hereditary integral 
(Eq. (30)2) involving vv0 and the unknown functions c„. 

According to Eqs. (7)1]2 and (20),, NtX = Nj, = 0 for N = 
N(t). Then, Eq. (22)! gives pj = P/(z, t), which is consistent 
with assumption (3). The present theory, however, allows for 
dependency of jcyalso onx&ndy (Eq. (29)). This inconsistency 
is not unlike that of classical plate theory, where the Kirchhoff 
assumption ez = 0 is not consistent with the plane stress as
sumption TZ = 0. If the fluid pressure varies slowly with x and 
y, then this approximation should not lead to serious errors. 

Finally, with pj known, N and M can be computed. Sub
stitution of Eqs. (29) into (22) and noting (35) yields 

N=-h 

M=-h2 

n = 0 

2^A;1 + *1 

where the 

*k = h - ( * + » &dz 

(36) 

(37) 

are given in Table 2. Using these equations, along with (30), 
(31), (33), and (34) and the expressions in Table 2, we can 
express the force and moment resultants (Eqs. (20)) in terms 
of w0-

The Poroelastic Plate Equation 
This section combines the equations of the previous sections 

into a single equation for w0. First, substituting Eqs. (8) for 
Qx and Qy into (7)3 yields 

Mx,xx + 2MXyiXy + MyiVy= -PO PS) 

Then, inserting Eqs. (3) into the moments of Eqs. (20) and the 
results into (38) leads to 

DVoW0=p0 + BaV2
0M (39) 

which, with Vo = VoVo is the governing equation of linear 
poroelastic plate theory. With Mexpressed in terms of w0 (Eqs. 
(30), (33), and (36)2), Eq. (39) becomes a single equation to 
be solved for w0. For a solid plate, a = 0 and Eq. (39) reduces 
to the classical plate equation (Szilard, 1974). 

Note the strong resemblance of Eq. (39) to the thermoelastic 
plate equation given in Chapter 12 of Boley and Weiner (1960). 
This is not unexpected since consolidation theory is analogous 
to coupled thermoelasticity (Biot, 1964). However, as is usually 
done, Boley and Weiner ignore the coupling between temper
ature and deformation, so the thermal bending moment (anal
ogous to M) can be computed a priori. The present theory 
retains the coupling between fluid flow and deformation. 

Boundary Conditions 
The principle of virtual work provides the appropriate 

boundary conditions for the poroelastic plate problem. Con
sider the rectangular plate in Fig. J_ with applied surface pres
sure (£), edge shear forces (Vx, Vy), edge bending moments 
(Mx, My), and corner forces V. The principle of virtual work 
takes the form 

where b W-, is the internal virtual work for the fluid-solid system, 
5W/is the energy dissipated through relative viscous fluid flow, 
and b We and 5 Ws represent the virtual work done by the edge 
and surface loads, respectively. 

For a plate of bulk volume fl and middle-surface area S, the 
first two terms in Eq. (40) can be written (Biot, 1962, 1972) 

SW,= [ (TM + Ty8ey + 2TxySexy+pf8ndn (41) 

•'o 
bwf= ) ubudti (42) 

where 

w = <j>(ws~wf), b$=bu. (43) 

The expression for 5f follows from Eqs. (23) and (24) and 
assumption (3), which yield t = (k/n/)Pf,zz = 4>(ws-wf)%z. 
The applied loading terms are 

hWs= - \ \p(\-4>)bws+p4>bw]]dS (44) 

bWP [Vxbwo-M^WoJody 

+ \ [VybW0- Mybw0J
b
0dx-lVbw0]\a

0\
b
0 (45) 

where [ ] = [ ]h-ln if limits are not specified. 
Manipulation of Eqs. (41)-(45) follows standard procedures. 

First, after substitution of Eqs. (2) and (43)2 into (41), inte
grating over the plate thickness and noting Eqs. (9) yields 

5Wj= \ (MxbKx + MybKy + 2MxybKxy 

+ [pfbw] )dS-\ pf, zboidU. (46) 

Moreover, since Sw = <j>(bws- bwf), bws = bw0 (es
z = 0), and 

[/?] = pi - Pi = - pa, Eq. (44) can be written 

5WS={ (p0bw0 + \p M )dS . (47) 

Next, inserting Eqs. (3) into (46), integrating by parts to 
remove derivatives of bw0, and combining the result with Eqs. 
(40), (42), (45), and (47) yields 

- (MX,XX+2MXy,Xy + Mytyy+PQ)bW0dS 

+ (p.fu/k-pu)8<l}dQ+ [(pf-p)bo>]dS 

+ \ UVx-Vx)6w0- (Mx-Mx)bw0J"ody 

+ \ KVy-Vy)bW0- (My-My)bW0,y}b
Qdy 

where 

-[(2MW-K)«w0 l lglg = 0. (48) 

(49) VX = QX+Mxfiy, Vy = Qy+ MXy:X 

with Qx and Qy given by Eqs. (8). The first two integrals imply 
Eq. (38) and the normal component of Eq. (23), respectively. 
The other terms give the boundary conditions 

h 

x = 0, a: 

bWi+bwf=bwe+bws (40) 

Pf-p or 5o) = 0 

VX=VX or8w0 = 0 

Mx = Mx or b vf0 x = 0 
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y = 0, b: Vy=Vy or 5w0 = 0 

My = My or<5w0j, = 0 

x=0,a;y = 0,b: 2Mxy=V or 6w0 = 0 (50) 

where Eqs. (3) and (20) give Mxy in terms of wa. The first set 
of boundary conditions correspond to the fluid conditions of 
Eqs. (28), while the others have the same form as those of 
classical plate theory. Differences, however, are contained im
plicitly in the fluid contribution to the bending moments (see 
Eqs. (20)). Furthermore, the in-plane stress resultants Nx and 
Ny are neglected at the edges. 

Solution Methods 
This section first considers a solution of the poroelastic plate 

equation by Lapalce transforms, which are often used in po-
roelasticity problems. Since inverting Laplace transforms is 
not always easy, we also present a peturbation solution method. 

Laplace Transform. Taking the Laplace transform of Eq. 
(39) with respect to time yields 

DVQWO(X, y, s) =p0(x, y, s)+BaV2
0M(x, y, s) (51) 

where hat denotes a transformed variable and S is the transform 
parameter. Equations (36)2, (30), (31), and (33), respectively, 
give 

M(x, y, s)= -h 2 A,,(x, y, *)*„;, + #i (x , y, s) 

A„(x, y, s)=c„(x, y)G„(s) + sG„(s)d„(x, y, s) 

Gn(s) = (s + K\2
n)-' 

d„(x, y, s)=ri„v2
aw0(x, y, s)+l„(x, y, s). (52) 

Substituting Eqs. (52) into (51) and rearranging terms leads to 

Dp (s) V0w0 (x,y,s)=p (x, y, s) (53) 

where e is the perturbation parameter. Then, Eqs. (39), (25) 
and (27), and (22)2, respectively, become 

D* Vo4Wo =Po +Bae2 V0*
2M* 

d P/ d * * * „ * 2 * N 

f1/2 * * 
M* = - \ p/z*dz* 

J— 1/2 

(57) 

Vo Vo • with V0" 
The dependent variables are expanded in series of the form 

v* = vm + e2vw + ... (58) 

where v* = (w%,p},M*). Substituting Eq. (58) into (57) and 
equating like powers of e gives, in the order needed for com
putation, 

a 2 (0) •) 

, *2 3/* \Pf ~C Z V ° W° ' 

A4<°>=- pfz*dz* 
"-1/2 

Z2pf d 
dz 2 dt 

T (^"-cVvo'M,") 

pfzdz*. (59) 

Given pi and the boundary and initial conditions on the vw, 
these equations can be solved successively for w0

0), pf\ M<0), 
wo\ P/l\ a n ( i Mm to provide a second-order solution. Note 
that the first relation is the governing equation for the drained 
plate. 

where 

Dp(s)=D + Bah2sJ^Gn(s)i„Ar,n (54) 

is the equivalent transformed flexural rigidity and 

p(x, y, s) =Mx, y, s)-Bah2vU Y^Gn(s)$,Kl[cn(x, y) 

+ sl„(x,y,s)\ + ^!x(x,y,s)\ (55) 

is the equivalent transformed pressure loading. 
The initial conditions give the c„ and, with the surface loads 

specified, the quantities £„ and %i can be computed (see Table 
2). Then, with care taken to satisfy the correct boundary con
ditions, standard techniques (Szilard, 1974) can be used to 
solve Eq. (53) for w0(x, y, s) with s a s a parameter. Finally, 
taking the inverse Laplace transform provides w0{x, y, t). 

Perturbation. For the following analysis, we introduce the 
nondimensional quantities 

e = h/a,a*=a/b, (w0\ W*0) = (w0, W0)/h 

x* =x/a, y* =y/b, z*=z/h, t* =Kt/h2 

\*n=\„h, •m*n=i]na
2/Ehi 

* _* _* _* * , * * ( . * - * T*-. 

( A ) , P o , P i , P 2 , P f , A „ , a „ , % An, **) 

= (Pa, Po, Pt, Pi, P/, A„, a„, £, £„, ¥k)a
4/Eh4 

(M*, M*) = (Mx, My)al/Eh\ M* =Ma4/Eh6 

D*=D/Eti = \\2{\ -v2)Y\ c* = ca2/Eh2 

Vo =7-J2 + « TTI (56) dx dy 

Example 
Consider a rectangular plate (a x b) that is simply sup

ported on all edges, so the boundary conditions on the edges 
are 

x*=0, 1 : wo*=M* = 0 

y* = 0, 1 : WQ=M* = 0. 

A pressure load 

Po(x*,y*, t*) = P*0(t*)Q(x*,y*) (61) 

is applied to the upper surface only, where 

P*o(t*)=P*0t* 

(60) 

Q{x*, y*) = sinxx*simcy*, (62) 

with Po = dPo/dt* being a constant loading rate. Since the 
applied load is zero at t* = 0, all of the dependent variables 
are also zero initially. Thus, Eqs. (30) and (36) and Table 2 
show that c„(x, y) = 0 (n = 0, 1, 2, . . .). 

Laplace Transform Solution. Equations (3), (20), (30), (33), 
(36)2,,(61), and (62) and Table 2 show that the boundary con
ditions (60) are satisfied by 

Wo (**, / , t*)=W*Q(t')Q{x*, y*) (63) 

where Wl is to be determined. Then, substituting the Laplace 
transforms of the dimensional forms of Eqs. (61), (62), and 
(63) into (53) and setting 

p(x,y,s)=P{s)G(x,y) (64) 

yields 
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surfaces, (b) permeable upper and impermeable lower surface, and (c) 
impermeable upper and lower surfaces 

WQ(s)=-
P(s) 

DJs) l)'+(f 
(65) 

For this problem, inserting Eqs. (54) and (55) into (53) gives 
\V0 (s) as a ratio of two polynomials in s, which can be inverted 
by a standard method (Greenberg, 1988). (0 cancels out since 
only even spatial derivatives appear in the equations.) 

Perturbation Solution. To solve Eqs. (59), we assume 
„<*) (x*,y*,t*)=Vw(t*)Q(x*,y*) (66) 

where v{k) = (u^>, />)*», Mw, A™, a(„k)) and V™ is the 
corresponding amplitude function. Substituting Eq. (58) for 
p} into the boundary conditions (28) provides the conditions 
on t h e p f >, and Eqs. (29), (36)2, (59), and (66) give 

u/ 0 ) Po w(i) 
" i ) V ( i + « " ) cVfi+a '2) 

M<0) = 

where 

E^°)*„;1 + ^ M(1) = S *?** (67) 

G„(t*)=e-
k*2t' 

Fig. 4 Deflection-load curves for impermeable upper and lower sur
faces (perturbation solution) 

^ = ^ V o z w 0
u ' + | „ 2 , , ,<°). 

<#> = ^ V o ' w o 0 

rj„=2c**„;1. (68) 

Also, ^ and ^* are obtained by placing asterisks on the pres
sures in Table 2. 

Results. Results are presented for the center (x* = y* = 
0.5) of a poroelastic plate with the following parameter values: 

a* = 0.5, 6 = 0.1, c = 0.1, c* = 50, a = l . 

The value for e represents a moderately thick plate, and the 
value of a is restricted to the bounds <j> < a < 1 (Biot and 
Willis, 1957), with a = 1 corresponding to a nearly incom
pressible solid. To see the meaning of the value chosen for c*, 
we note that since A/E = (1 - v)/[{\ + v)(l -2v)], Eqs. (16), 
(19), (27), and (56) give 

F » aA/l-2v 
C ~e2E\\-v) yA + a'F) (1 + v)e2 

for a. = 1 and , 4 /F = O(l), c 

^ (69) 

Thus, for a = 1 and A/F = O(l), c* = 0 ( 0 as specified 
above. The Laplace transform results are based on three terms 
in the pore-pressure series (see Eq. (29)), and, since the algebra 
involved in the perturbation expansion is less tedious, the per
turbation solution is based on five terms. 

Pore pressure distributions (Fig. 2) show good agreement 
between the two solutions. For small t*, strong transverse 
pressure gradients occur, but as the fluid approaches equilib
rium relative to the solid, the gradients decrease toward the 
elastic plate solution, with pf acting as a hydrostatic pressure. 
The positive bending causes compression for z < 0 and tension 
for z > 0, as illustrated by the total stress distributions (Fig. 
3). For symmetric surface boundary conditions (BCs #1 and 
#3 of Eq. (29), Figs. 2(a, c)), this leads to positive fluid pressures 
in the upper half of the plate and negative pressures in the 
lower half, inducing flow primarily from top to bottom. The 
other (asymmetric) boundary condition (BC #2, Fig. 2{b)) gives 
positive pore pressures throughout for short times, forcing the 
fluid from the center toward both plate surfaces. 
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For short times, the total bending stresses (Fig. 3) deviate 
significantly from those given by the elastic plate solution. In 
the example shown (BC #2), a boundary layer appears near 
the permeable upper surface (z/h = -0 .5 ) . In addition, for 
BC #3 at high loading rates, the deflection at a given load is 
significantly lower than the deflection for an elastic plate (Fig. 
4). This difference is less for the other boundary conditions. 

Finally, to check assumption (3), we computed the ratio 
\Pf,xx/Pf,Zz I ( n o t shown). For BCs #1 and #2, this ratio remains 
less than about 0.05 throughout the plate except near z = 0, 
where values up to 0.3 occur, and near the permeable surfaces, 
where very large values appear. For BC #3, the ratio is small 
except within a narrow zone near z = 0, where it grows very 
large. The large values are due to a very small PftZZ rather than 
a large pfxx, so they do not necessarily indicate that the in-
plane flow is important. Thus, assumption #3 appears to be 
valid for a thin plate. 
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Two-Dimensional Rigid-Body 
Collisions With Friction 
This paper presents an analysis of a two-dimensional rigid-body collision with dry 
friction. We use Routh's graphical method to describe an impact process and to 
determine the frictional impulse. We classify the possible modes of impact, and 
derive analytical expressions for impulse, using both Poisson's and Newton's models 
of restitution. We also address a new class of impacts, tangential impact, with zero 
initial approach velocity. Some methods for rigid-body impact violate energy con
servation principles, yielding solutions that increase system energy during an impact. 
To avoid such anomalies, we show that Poisson's hypothesis should be used, rather 
than Newton's law of restitution. In addition, correct identification of the contact 
mode of impact is essential. 

1 Introduction 
Although planar rigid-body impact has been studied for 

centuries, and is discussed in almost all dynamics texts, there 
are still unresolved difficulties: 

• There are two competing laws governing the coefficients 
of restitution: Newton's law and Poisson's hypothesis. When 
do they give the same system behavior? Is one law preferable 
to the other? 

• Some methods, for instance in Whittaker (1944), can result 
in an increase in total energy, violating basic energy conser
vation principles (Keller 1986; Brach 1984). How can we avoid 
such anomalies? 

This paper resolves these difficulties by adopting Poisson's 
hypothesis of restitution and by using Routh's method (Routh 
1860) to determine the resultant impulsive forces. The Routh-
Poisson analysis gives an impulse consistent with Coulomb's 
law, without an increase in total energy. An interesting divi
dend is that the Routh-Poisson analysis admits a new class of 
impact, called tangential impact, defined as an impact with 
zero initial approach velocity. 

Routh's method is a simple graphical technique for analyzing 
frictional impact in the plane. Using Coulomb's law of dry 
friction, and either Newton or Poisson restitution, Routh's 
method readily predicts the total impulse. We can also use 
Routh's method to distinguish several different types of con
tact, to identify cases where relative sliding either ceases or 
reverses, and to identify the cases where Newton and Poisson 
restitution differ in their predictions. Although this geometrical 
approach is restricted to planar problems, Keller (1986) de-
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velops an analytical method that extends the fundamental con
cepts to three-dimensional problems. Han and Gilmore (1989) 
apply the same approach to multiple-contact impact. 

The choice between Newton's law of restitution, and Pois
son's hypothesis, is particularly important. Newton prescribes 
the final normal velocity, while Poisson prescribes the normal 
forces applied during restitution, a difference which leads Kil-
mister and Reeve (1966) to argue that Poisson's hypothesis is 
philosophically superior to Newton's law. In the simplest cases, 
the two methods give identical results, but generally they do 
not. Although Newton's law of restitution is the more com
monly applied method, we show that the violations of energy 
principles can be attributed to Newton's law of restitution. 

Section 2 reviews the classical impact model of collision and 
the definitions of restitution and friction. Section 3 describes 
the equations of motion and introduces Routh's graphical tech
nique. Sections 3.4 and 3.5 identify the different classes of 
impact and derive solutions for each class. Sections 4 and 5 
derive expressions for system energy change and compare New
ton's law of restitution and Poisson's hypothesis. Section 6 
presents some examples using both Routh-Poisson and Routh-
Newton. Finally, Section 7 contains a few concluding remarks. 
Some of results were previously presented in (Wang, 1986; 
Wang and Mason, 1987; Mason and Wang, 1988). 

2 Rigid-Body Model of Collision 
The sudden, short-term encounter between two colliding 

bodies is a very complicated event. The major characteristics 
are the very brief duration and the large magnitudes of the 
forces generated. Other phenomena include vibration waves 
propagating through the bodies, local deformations produced 
in the vicinity of the contact area, and frictional and plastic 
dissipation of mechanical energy. The complexity of the proc
ess leads to serious difficulties in the mathematical analysis of 
the problem. By introducing the rigid-body assumption and 
Coulomb's law, we simplify the analysis while retaining a fair 
approximation of a significant class of real systems. 
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Fig. 1 Two colliding rigid bodies in a plane. The normal impulse and 
tangential impulse acting on the body 1 are shown as Py and Px. 

For the collision of two rigid bodies (Fig. 1), the primary 
simplifying assumption is a postulated deformation history. 
This deformation history is assumed to consist of two pe
riods: the period of compression and the period of restitu
tion. The compression period extends from the instant of 
contact to the point of maximum compression, when the ap
proach velocity becomes zero. The period of restitution then 
begins, lasting to the instant of separation. The time interval 
of the contact is assumed to be very small and the interaction 
forces are high. These postulates permit some further as
sumptions. (1) The collision process is instantaneous, and lin
ear and angular velocities of the bodies have discontinuous 
changes. (2) Interactive forces are impulsive, and all other finite 
forces are negligible. (3) No displacements occur during the 
collision. 

2.1 Coefficient of Restitution. During the brief period 
of contact, a normal force F acts along the common normal 
between the two bodies.1 Since the contact duration is suffi
ciently small, the contact force may be represented by Dirac's 
delta function. 

P= lim \F(t)dt. (1) 

It is called impulse and is defined to be finite. 
The magnitude of the normal impulse consists of two parts, 

Pc and Pr, corresponding to the periods of compression and 
restitution, respectively. The total impulse is the sum of the 
two parts 

Py = Pc + Pr. (2) 

If we adopt Poisson's hypothesis (Beer and Johnston, 1984), 
it is further postulated that the ratio of Pr to Pc is determined, 

Pr 
(3) 

This constant e is called the coefficient of restitution, and is 
assumed to depend solely on the materials of the bodies (Gold
smith, 1960). The coefficient describes the degree of plasticity 
of the collision, and its value is always between zero and one. 
When e = 0, the impact is said to be perfectly plastic; when 
e = 1, it is said to be perfectly elastic. 

Poisson's hypothesis immediately suggests a model based 
on a hysteretic spring or other passive elements. The coefficient 
of restitution may, however, be put in another form, known 
as Newton's law of restitution, which cannot be modeled in 
this way. Newton's law of restitution states 

9L (4) 

where C~ and C+ are the normal components of relative ve
locity at the contact point before and after the collision, re
spectively. 

Both Poisson's hypothesis and Newton's law have been 
adopted by the scientific community to describe the energy 
dissipation. However, they do not in general produce consistent 
solutions. In this paper, we discuss both definitions and their 
solutions of impact. Section 5 shows that Newton's law can 
lead to violation of energy conservation. 

3 The Two-Dimensional Collision Problem 

This section analyzes the process of two planar rigid bodies 
with friction. First, we present Routh's method. Then, we use 
Routh's method to classify the different kinds of impact and 
derive solutions for each class. 

3.1 Equations of Motion. When two bodies collide, im
pulses in the normal direction Py and in the tangential direction 
Px at the contact point are produced. These impulses will change 
the object's motions. In the coordinate system shown in Fig. 
1, the initial translational and rotational velocity components 
of the first object are xi0, j l 0 , and 8i0. The origin of the 
coordinates is chosen at the point of contact. The coordinate 
axes x and y are in the directions tangential and normal to the 
contact surfaces. At any instant during the impact, the motion 
of the object is governed by the linear and angular impulse-
momentum laws, which provide the following relations: 

m1(xi-xi0)=Px 

m[(yi-yto)=Py 

'if one of the contact points is a vertex, the common normal is defined as 
the normal of the other body's surface. We do not consider the case of two 
vertices in contact. 

(5) 

(6) 

m i P i ( f l i - f l i 0 ) = P j ' i - i V c i (7) 

where mx is the mass, pi is the radius of gyration of inertia, 
and X\ and y{ are the coordinates of the center of mass for the 
first object. 

The velocity of the point of contact on the first object con
sists of two components, k\c and yic. These two components 
are given by 

xlc=x1 + 8]yi (8) 

yic = yi-8iXi. (9) 

Similarly, we obtain the dynamic equations for the second 
object 

m2(x2-x2o)= -Px (10) 

m2(y2-y2o)=-Py (11) 

m2P2(62-02o)=-Pxy2 + Pyx2 (12) 

x2c=x2+62y2 (13) 

yic=y 2-82X2 (14) 

where m2 is the mass, p2 is the radius of gyration of inertia, 
and x2 and y2 are the coordinates of the center of mass for the 
second object. 

From Eqs. (8), (9), (13), and (14), the tangential component 
of relative velocity of the points in contact is called sliding 
velocity and is given as 

o = X\c — X2c 

= (xl + e{yl)-(x2+d1y2) (15) 

and the normal component of relative velocity is called 
compression velocity and is given as 

C=yic-y2c 

= (yi-elxl)-(y2-e2x2). (16) 
Substituting the dynamic Eqs. (5)-(7) and (10)-(12) into these 
kinematic equations, we find that 

S^So + BiPx-BiP,, (17) 

C=C0-B3Px + B2Py (18) 

636 / Vol. 59, SEPTEMBER 1992 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.21. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



where 

and 

So 

Br-

B2--

= * 1 

1 
rrii 

1 

Bi 

CO ~ 

1 
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y] + 
2 + 

« l P l 
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2 + 

W,pi 

_xiy2 

m2p
2

2 

- (x2o 

yl 
m2p\ 

v 2 

x2 m2p
2

2 

+- 62oy2) 

c0 — y\Co—y2co 

= (j>\0- 6ioxi) - (y2o- 62ox2). 

(19) 

(20) 

(21) 

(22) 

(23) 

Note that S0 and C0 are the initial values of sliding and compres
sion velocities. Bu B2, and Z?3 are constants, dependent on the 
geometry and mass properties of the system, with Bl and B2 

always positive. In all cases, 
in later sections. 

B,B2 > Bj, which will be useful 

3.2 Restitution and Friction. The algebraic Eqs. (17) and 
(18) give the relative velocity (S, C) as a function of total 
accumulated impulse (Px, Py). Routh's method also requires 
that we express the laws governing restitution and friction in 
terms of the total accumulated impulse (Px, Py). 

3.2.1 Coefficient of Restitution. By assumption, object 
deformation consists of two phases: compression and resti
tution. At the end of the compression phase, the normal com
ponent of the relative velocity of the points in contact is zero 
(C = 0). Substituting Eq. (18), we obtain a linear relationship 
between the impulse components at maximum compression: 

Co-B3Px+B2Py = 0. (24) 

In the (Px, Py) space, this equation defines a straight line 
called the line of maximum compression. 

After the point of maximum compression, the restitution 
phase begins, lasting to the end of the collision. Under New
ton's law, the collision ends when the normal velocity C is - e 
times the initial normal velocity C0. That is 

C(t0) 

where /„ is the initial collision time and tf is the termination 
time. Substituting this into Eq. (24), we obtain 

(l+e)Co-BiPx + B2Py = 0 (t=tf). (26) 

Again, we obtain a line in the (Px, Py) space, called the line 
of termination. When using Newton's law of restitution, the 
total impulse will always fall on the line of termination. 

But under Poisson's hypothesis, the collision ends when the 
total normal impulse Py is (1+e) times that value of Py at 
maximum compression. That is 

(25) 

PAtf) 
PyUc) 

1+e (27) 

where tc denotes the instant of maximum compression. Unlike 
Newtonian restitution, Poisson's hypothesis does not yield a 
line of termination. 

3.2.2 Coefficient of Friction. Friction causes an impul
sive force in the tangential direction at the contact point. We 
adopt Coulomb's law to determine the force of dry friction. 
The law states that the magnitude of the (tangential) frictional 
force Fx depends only on the magnitude of the normal force 
Fy and the materials in contact, and its direction is always 
opposite that of relative tangential motion. This law is com
monly expressed as 

(c) (d) 

Fig. 2 Impact process diagram. The lines of sticking, lines of maximum 
compression, and lines of termination are labeled, respectively, with S, 
C, and T. The lines of limiting friction and the line of reversed limiting 
friction are labeled with L and RF, respectively. The point P is the rep
resentative point. 

\Fx\<.pFy (28) 

where ix is the coefficient of friction and is an empirical con
stant. In this paper, we do not distinguish between static and 
dynamic friction and we take the values for corresponding 
noncollision processes. 

Coulomb's law includes two different cases: sticking and 
sliding. Since differential impulse is force, these cases are ex
pressed as 

\dPx\ <fidPy for sticking 

\dPx\ =\idPy for sliding. 

In the sticking case, the tangential component of relative 
velocity vanishes (S = 0). Again we can substitute Eq. (17), 
obtaining a linear relation between the components of impulse 
(Px,Py), 

S0 + B,Px-B,Py = Q. (29) 

This gives a straight line in the (Px, Py) space, called the line 
of sticking. 

3.3 Impact Process Diagram. To solve an impact prob
lem, we employ Routh's graphical technique to determine the 
total impulse. Figure 2 shows an example. We construct im
pulse space with coordinate axes Px and Py, and plot the ac
cumulating impulse P. When the impact begins, P is at the 
origin. During the impact, the normal impulse Py increases 
monotonically until the restitution law, which could be either 
Poisson or Newton, says that the impact is finished. 

Px also accumulates, in accordance with Coulomb's law. 
Assuming initial sliding, the impulse increases along a line of 
limiting friction (Fig. 2(b)) satisfying Coulomb's law: 

Px=-lxsPy (30) 

where 5 is the sign of the initial sliding velocity S0, 

*=ltlif^°-
If the point reaches the line of sticking, the sliding will end 

and the frictional impulse will exhibit a change. There are two 
possibilities: 

1 If the friction necessary to prevent sliding is less than the 
limiting friction, the point P will follow the line of sticking 
until the process terminates (Fig. 2(c)) . 
2 If the limiting friction is too small to prevent sliding, then 
P will cross the line of sticking, and the tangential force will 
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Fig. 3 All possible cases of meeting impact in the {Px, Py) space. The 
lines of sticking and maximum compression are labeled S and C. 
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Fig. 4 There are two possible cases of tangential impact in the (P„, Py) 
space, which are labeled "yes." The lines of sticking and maximum 
compression are labeled S and C. 

change sign, so that P now travels along the line of reversed 
limiting friction given by (Fig. 2 (d)) 

dPx = fisdPy. 

Eventually, point P will cross the line of maximum compres
sion. A perfectly plastic collision terminates at that point. By 
Poisson's hypothesis, a perfectly elastic collision continues 
until the normal impulse Py is doubled. Intermediate cases, 
with coefficients of restitution between 0 and 1, terminate when 
the normal impulse is (1 + e) times the value of Py obtained 
at maximum compression. By Newton's law of restitution, the 
collision terminates when the point P reaches the line of ter
mination. 

The entire process can be summarized in a few lines. To 
recapitulate: 
1 P moves initially along the line of limiting friction. 
2 If P reaches the line of sticking, S = 0, then P switches 
to either the line of sticking, or the line of reversed limiting 
friction, whichever is steeper. 
3 Termination occurs when: 

(a) Newton: P reaches the line of termination. 
(b) Poisson: Py reaches a value (1 + e) times its value 

at the line of maximum compression. 
This procedure solves the impact problem by constructing the 
total impulse, from which we can immediately determine the 
resulting body motions. 

3.4 Classes of Impact and Contact Modes. Routh's pro
cedure, described above, is a graphical solution of impact 
problems. It can also be used to derive an analytic solution of 
impact problems. In this section we identify the different cases 
that must be considered. In the following section we derive 
analytic solutions of impact for each case using both Poisson's 
and Newton's methods. 

3.4.1 Direct and Oblique, Central and Eccentric, Tangen
tial and Meeting Impacts. Collision problems are classified 
first by the locations of the line of sticking and the line of 
maximum compression, which depend primarily on the signs 
of B3, So, and C0. Figures 3 and 4 show all possible combi
nations of the linear relationships, and thereby classifies all 
possible impacts. Figure 3 takes the case C0 < 0, and plots all 

nine combinations for the signs of B2 and 50. The rows indicate 
the direction of the sliding velocity while the columns indicate 
the impact configuration. There are two special classes. If the 
initial sliding velocity is zero (S0 = 0), the impact is called a 
direct impact, represented by the middle row in the figure. If 
BT, = 0, the impact is called a generalized central impact, 
represented by the middle column. (Central impact, where the 
body centers of mass lie on the contact normal, is subsumed 
by generalized central impact.) Impacts which are neither di
rect, nor generalized central impacts, are called eccentric 
oblique impacts. 

Figure 4 shows a new class of impacts, which we will call 
tangential impacts, which can occur when C0 = 0. Previous 
work has only considered collisions with finite approach ve
locities, C0 < 0, which we might term meeting impacts. Perhaps 
this reflects a bias towards finite force solutions. Indeed, Kil-
mister and Reeve (1966) even adopt & principle of constraints 
stating: 

constraints shall be maintained by forces, so long as this is 
possible; otherwise, and only otherwise, by impulses. 

However, there are problems with zero initial compression 
velocity for which only impulsive forces will maintain the kin
ematic constraints. An example is presented in Section 6. So, 
even if we adopt the principle of constraints, tangential col
lisions are sometimes the only solution available. 

Only two of the cases shown in Fig. 4 yield feasible tangential 
impacts: S0 < 0 and 5 3 > 0; or S0 > 0 and fi3 < 0. In these 
two cases, and with a large enough coefficient of friction, the 
line of limiting friction passes immediately below the line of 
maximum compression, yielding a compressive phase followed 
by a restitution phase as in ordinary meeting impacts. 

It is also natural to consider admitting collisions with positive 
compression velocities C0 > 0, which we might term parting 
impacts. It is possible to view the restitution phase of a meeting 
impact as a parting impact, but otherwise we see no necessity 
for admitting parting impacts. 

3.4.2 Contact Modes. The contact mode can be deter
mined by a few simple comparisons. We consider the case with 
S„ < 0 and B3 < 0 (Fig. 5). Other cases are similar. In Fig. 
5, the line of sticking intersects the line of maximum compres
sion at point Q and the line of termination at point D. The 

638 / Vol. 59, SEPTEMBER 1992 Transactions of the AS ME 

Downloaded 03 May 2010 to 171.66.16.21. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



line of maximum compression 

tine dt termination 

Fig. 5 Three regions in impulse space. In region 1, sticking never oc
curs; in region 2 and region 3, either a sticking or a reversed sliding 
contact occurs. 

(Px, Py) space is divided into three regions by the lines OD 
and OQ. If the limiting friction line lies in region 1, the impact 
will be terminated before the representative point P reaches 
the line of sticking. The friction continues the limiting value 
throughout the process, so that the objects slide continuously. 
In this case Poisson and Newton give identical results, so the 
impact terminates at the line of termination. 

If the limiting friction line lies in region 2, it reaches the line 
of maximum compression first, then reaches the line of stick
ing. If the limiting friction line lies in region 3, it reaches the 
line of sticking first. In either of regions 2 or 3, after intersecting 
with the line of sticking, it either continues sticking until ter
mination or changes to reversal sliding. 

These regions can be used to classify contact modes of im
pact. For an oblique impact, there are five contact modes: (1) 
sliding, (2) sticking in compression phase (C-sticking), (3) stick
ing in restitution phase (R-sticking), (4) reversed sliding in 
compression phase (C-reversed sliding), and (5) reversed sliding 
in restitution phase (R-reversed sliding). The classification de
pends on the values of fi, p.d, ixq, fis, Pd, and Pq given by 

Table 1 Contact modes of impact, where ix is the friction coefficent 
and s is the sign function of S0 if S„ ^ 0 

Pd > (1 + e)P, 

Pq<Pd<(l + e)Pq 

Pd<Pq 

M > IM.I M< N 
Sliding 

R-Sticking 

C-Sticking 

R-Reversed Sliding 

C-Reversed Sliding 

motions. If we define the sign function of initial sliding velocity 
S0 to be of value one when S0 = 0, the resulting impulses for 
both direct impact and oblique impact can be expressed in a 
unified form. 

For Poisson's method, the impulses are given by contact 
mode: 

sliding: 

C-sticking: 

PX= ~SlxPy 

P , = - ( l + e ) 
Cn 

P , = - ( l + e ) 

B2 + SfiB3 

B3Py-S0 

Bx 

B\C0 + B3S0 

R-sticking: 

P , = 

B\B2 — B3 

BiPy~S0 

B 

Py=-(l + e) 
Cn 

9 C-reversed sliding: 

Px = Sp. 

B2 + sixB3 

2S0 
p _ 

y B3 + sixB 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

/xd = tan <pd = 

H = tana 

{\+e)B3C0+B2S0 

Hg = ian <t>g = 

(l + e)fl,C0 + fl3S0 

B3C„ + B2S0 

B\C0 + B3S0 

fe = t a n / 3 s = - — 

Pd = (B2 + s^.B3)sS0 

(31) 

(32) 

(33) 

(34) 

(35) 

Pq=(liBi + sB3)(-C0). (36) 

The contact modes are summarized in Table 1. Note that the 
reversed sliding contact modes require that S0B3 > 0. 

For a direct impact (S0 = 0), the line of sticking passes 
through the origin (Fig. 3). Region 2 vanishes and ixd and \iq 

have the same value as fis. Only two contact modes are possible, 
sticking (in compression phase) or sliding. Reversed sliding will 
never occur. As discussed by Routh, the representative point 
will follow either the line of limiting friction or the line of 
sticking throughout the entire process, depending on the fol
lowing conditions: 

ix < I JXS I for sliding (37) 

ix> \JXS\ for sticking. (38) 

Wang and Mason (1987) and Han and Gilmore (1989) present 
similar results. 

3.5 Analytical Solutions of Impulse. Once the contact 
mode is determined, we can solve for the impulses and object 

Py = 
l+e 

B2-sixB3 

R-reversed-sliding: 

C0 + 
2sfi.B3S0 

B3 + s/ifi, 

PX = S)X / \ — 
2S„ 

Py = d+e) 

B3 + sfiBi 

B2 + SIJ,B3 

where 

if S„^0 

if So = 0. 

(46) 

(47) 

(48) 

(49) 

If we use Newton's law of restitution, the conditions for 
contact modes remain the same. However, whether sticking 
occurs in the restitution phase or in the compression phase 
does not affect the resulting impulses. The impulses are: 
8 sliding: 

Px= -SixPy (50) 

Py=-{\+e) „ C°_ „ (51) 
B2 + S/J.B3 

sticking (C-sticking or R-sticking): 

B2S0+(l+e)CoB3 
Px = 

B\B2 — B3 

(52) 
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Py = 
B 3 S 0 +(1 + 6 ) 0 ^ , 

B,B2 •B\ 
(53) 

reversed sliding (C-reversed sliding or R-reversed sliding): 

2S0 

Py = 

PX = S/J. 

1 
B2~sp,B3 

y B3+sixBx 

( l + e ) C 0 + 
IspiB^So 

B3 + snBt 

(54) 

(55) 

where s is defined by Eq. (49). 
Note that for sticking (in compression or in restitution) con

tact, the solutions are independent of the value of the coef
ficient of friction. As long as the friction is sufficient to prevent 
sliding, further increases do not matter. These expressions also 
appear in Wang (1989). Han and Gilmore (1989) present a 
similar analysis. 

4 Energy Loss 

Since some methods for rigid-body impact violate energy 
conservation principles, we develop expressions for the total 
energy loss during the impact. Due to the existence of friction 
and inelasticity, the system must lose some mechanical energy 
during the collision. The change in kinetic energy equals work 
done by the impulse. If 7^ and T2 are the kinetic energies of 
body 1 and body 2, respectively, then the system energy change 
is (Routh 1860), 

AT= (Tdtf) + T2(Tf)) - (T,(tD) + T2(t0)) 

1 
[Pr(Vc + Vc0)] 

where, P = [P„ Py\
T, Vc [S C\T, and VCl 

(56) 

[So C0f. 
Substituting Eqs. (17) and (18) the energy change is 

A r = ^ ( P r B P + 2Vc
r
0P) (57) 

B = 

where 

B, -B3 

- Bi B2 

Conservation of energy requires that 

AT<kO. (58) 

This gives a geometrical constraint in the impulse space: The 
total impulse must remain within an ellipse. 

5 Poisson's Hypothesis Versus Newton's Law 
By comparing the solutions of impulse presented in Section 

3.5, we can identify the conditions under which Poisson's 
hypothesis and Newton's law give the same solution: 

1 The collision is a direct impact, where the initial velocities 
of the contact points are directly along the common normal 
(S0 = 0) (Kilmister and Reeve (1966). 
2 The collision is a generalized central impact (B3 = 0). 
3 The surfaces of the bodies are perfectly smooth and fric-

tionless (Beer and Johnston, 1984). 
4 The surfaces of the bodies are perfectly plastic (e = 0) 
(Wang, 1989). 
5 The impact is of sliding contact, if friction between the 
bodies exists (Keller, 1986). 

Now let us check energy conservation for the two models. 
We need examine only the perfect elastic case (e = 1), since 
any degree of plasticity will result in more energy loss. Under 
Poisson's hypothesis, an energy gain is impossible, which is 
verified by substituting the solutions of Section 3.5 into Eq.. 
(56) (see Appendix). However, Newton's law of restitution 

Fig. 6 A rigid rod colliding a frictional surface. In all cases, m = 1, 
length d = 1/2, mp2 = 1/12, 0 = 45 deg, and initial angular velocity w 
= 0. 

Fig. 7 Impact process diagram of the falling rod for case 1. Initial 
compression velocity C„ = - 1 and initial sliding velocity S0 = 0. L and 
L' denote the lines of limiting friction for n < 0.6 and /i > 0.6, respec
tively. 

sometimes produces energy gains. An example is given in the 
next section. 

From both philosophical and practical points of view, Pois
son's hypothesis is preferable to Newton's law of restitution. 
The philosophical reason, as argued by Kilmister and Reeve 
(1966), is that Poisson's hypothesis is expressed as a dynamic 
law, rather than as a kinematic constraint. The practical reason 
is that Poisson's hypothesis is consistent with energy conser
vation. This seems also to be consistent with Routh's original 
work where only Poisson's method is used. 

6 Examples 
This section illustrates our results with the example of a rod 

colliding with an immobile object (Fig. 6). This example has 
been used on many occasions to illustrate paradoxes in the 
mechanics of friction and impact (Goldsmith, 1960; Lotstedt, 
1981; Brach, 1989; Erdmann, 1984). We assume point contact 
with Coulomb friction. The rod's initial orientation is 6 = 45 
deg, and the initial angular velocity is zero 0)(to) = 0. The 
rod has unit mass and unit length (mt = 1, p\ = 1/12). Note 
that m2 -~ oo and m2p\ — oo and Bt = 2.5, B2 = 2.5, _B3 = 
1.5, and ns = - 0 . 6 . 

By varying the initial velocity, we obtain four cases that 
illustrate the results of the paper. 

Case 1: Direct Impact (C0 = - 1 and S0 = 0). Since S0 

= 0, this is a direct impact. The impact process diagram is 
shown in Fig. 7. From Eqs. (37) and (38), we find that if JX < 
0.6, sliding contact occurs and the rod's tip has a negative 
final tangential velocity; otherwise (n > 0.6), sticking contact 
occurs and the final tangential tip velocity is zero. These results 
agree with those in (Brach, 1989). 

Case 2: Reversed Sliding {C„ = - 1 . 0 and S0 = 0.6). If 
the initial tangential velocity is 0.6 (Fig. 8), then we will have 
reversed sliding for fi < 0.6 and sticking for /J. > 0.6. Assuming 
the sticking contact, p, > 0.6, with Newton's law of restitution, 
there is a net gain in energy. The impulses and resultant motions 
are 

/ > = 0.375 e 
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Fig. 8 Impact process diagram of the falling rod for case 2. Initial 
compression velocity C0 = - 1 . 0 and initial sliding velocity S„ = 0.6. 
The ellipse denotes the boundary of the region of energy loss. The line 
of termination l i s tangent to the ellipse. 

Py = 0.4 +0.0625 e 

S = 0 

C = e 

and the energy gain of the system is 

AT=- (0.625 e2-0A). 

Therefore, for all values e > 0.8, the rod gains energy instead 
of losing energy. In order to lose energy, the final impulse 
must lie within the ellipse plotted in Fig. 8. For e = 1, the rod 
gains energy for any LI > 0. 

The difficulty does not occur if we use Poisson's hypothesis 
instead, giving 

Px = 0.24e 

Py = 0A(\+e) 

S = 0 

C=0.64<? 

with a corresponding energy increase 

AT=- (0.256 e2-0.4) 

which is always negative for 0 < e < 1. Poisson's model 
results in both kinematically and dynamically valid solutions. 

Brach (1989) uses the same example, with Newton's law of 
restitution, and resolves the increase in energy in a very dif
ferent manner. He does not treat JX (or e) as predetermined 
parameters. For this example, he disallows nonzero fi, because 
it would lead to energy gains. 

Case 3: Forward Sliding; Sticking (C0 = - 1 . 0 and ^0 = 
-1 .0) . For initial conditions of S0 = C0 = - 1 . 0 , Fig. 9 
shows the impact process diagram. The critical values of fx are 
Hd = (3( l+e)+5) / (5( l + e) + 3)and/t ? = 1.0. If [x < ixd, the 
tip keeps forward sliding in the collision; if pd < fx < 1.0, 
sticking in restitution occurs; and if ix > 1.0, sticking in 
compression occurs. 

Case 4: Tangential Impact (C0 = 0 and S0 = -0 .2 ) . The 
final example involves tangential impact, which was defined 
and discussed in Section 3.4. Initially the rod is sliding along 
the surface with zero normal velocity. We begin by considering 
a finite-force approach to the problem. We also modify the • 
problem slightly: We introduce a gravitational field. The sur
prising result is that no solution exists: Every contact force 
consistent with Coulomb's law will violate the kinematic con
straint. If the contact force were zero, the gravitational force 
would accelerate the tip downward. For positive contact forces, 
and with JX > 1.666, the rod's physical parameters have been 
chosen so that the angular acceleration, accelerating the tip 
downward, dominates the linear acceleration, which would 

/ 

Fig. 9 Impact process diagram of the falling rod for case 3. Initial 
compression velocity C0 = - 1.0 and initial sliding velocity S„ = - 1.0. 
L and L' denote the lines of limiting friction for p. < /td and n > n,,, 
respectively. 

p 

, 

y 

-0.133 

y 

- A 

/ 0.08 

s 

- L 

c 

Fig. 10 Impact process diagram of the falling rod for case 4. Initial 
compression velocity C0 = 0 and initial sliding velocity S„ = - 0 . 2 

accelerate the tip upward. Mason and Wang (1988) and Wang 
(1989) present a more detailed analysis of the problem. Pre
vious work, neglecting the possibility of an impact solution, 
present this example and variations to demonstrate the incon
sistency of rigid-body mechanics (Lotstedt, 1981; Erdmann, 
1984; Beghin, 1923-1924; Klein, 1909; Painleve, 1895; Hamel, 
1949). 

Now we apply the Routh-Poisson method to derive impulsive 
forces. In the impact process diagram (Fig. 10), the line of 
maximum compression C passes the origin with an angle 0C 

= tan~' 1.666. For ^ > 1.666, an impact solution with sticking 
contact exists, and both nonzero tangential and normal im
pulses are obtained. If LI < 1.666, then compression cannot 
occur, so impulsive forces will be zero. An impact solution 
exists in exactly those cases where the finite solution does not 
exist. 

How does Newton's law of restitution relate to tangential 
impact? Since the normal velocity is zero, the final velocity 
would also be zero, no matter what value for the coefficient 
of restitution. Hence, any difference between plastic and elastic 
behavior cannot be expressed using Newton's law. 

7 Summary and Conclusion 
This paper derives solutions for frictional planar rigid-body 

collisions, using Routh's impact process diagrams, for both 
Newtonian and Poisson restitution. We apply the graphical 
method of Routh to describe an analytical solution to the 
collision problem. The contact mode determines how the body 
velocities change during the course of impact. If the contact 
mode of impact is not properly identified, solutions sometimes 
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violate energy conservation. Using Routh's method, we char
acterize all possible contact modes of impact, and then derive 
analytical solutions for impulses and motions of the bodies. 

An important observation regards the definition of the coef
ficient of restitution. We have presented solutions using both 
Poisson's hypothesis and Newton's law of restitution. Pois-
son's hypothesis, relating the normal impulses during two pos
tulated phases of compression and restitution, guarantees 
energy conservation principles, but Newton's law of restitu
tion, relating the initial and final normal velocities, cannot. 
As a dynamic law, Poisson's hypothesis is superior to Newton's 
law of restitution which is an artificial kinematic relationship 
and is not always applicable. 

There are alternative methods to resolve the violation of 
energy conservation. Rather than blaming the definition of 
restitution, it is possible to blame the definition of friction. 
Brach (1989) takes this approach, and adopts a coefficient of 
friction that is lowered to prevent energy gains, and also to 
prevent reversal of tangential tip velocity. In the most extreme 
cases, the only value of \i that satisfies these constraints is zero. 
We view Poisson restitution as preferable to a law that deter
mines fi after the fact. In addition, Poisson's hypothesis works 
nicely with tangential impact. Stronge (1990) proposes an al
ternative law of restitution which also appears to resolve the 
energy conservation problem. 

As Routh indicated, the extension of his approach to the 
general three-dimensional rigid-body impact problem is not by 
any means straightforward. Keller (1986) provides an analytical 
extension to three dimensions, and also gives a fundamental 
development of the method. However, the simplicity of Routh's 
graphical approach does not extend to three dimensions. No 
algebraic relationships in impulse space can be found to de
scribe limiting friction. Differential descriptions are necessary, 
and an analytical solution would be difficult at best. 
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A P P E N D I X 

We verify energy conservation for Poisson's hypothesis for 
the perfect elastic case (e = 1). It is useful to note that Py > 
0, 5 , > 0, B2 > 0, and BXB2 - B\ > 0. The energy losses are 
given by contact mode: 
9 sliding: 

2AT= -siiPy(S + S0). 

Note that S remains the same sign with S0 and s{S + S0) 
> 0. Therefore, AT < 0. 

For the remaining contact modes, if we solve for S0 and C0 

from the solutions of impulse given in Section 3.5 and sub
stitute them in Eq. (57), then the energy change is a quadratic 
form of variables of impulses (Px Py) can be examined to 
determine its sign. 
• C-sticking: 

1 
2AT=--(B1Px-B3Pyy<0. 

B\ 

R-sticking: 

2AT= -(BiPl + sixBiP),). 

There are two cases, sB3 > 0 (therefore, AT < 0) and s5 3 

< 0. In the second case, the quadratic form is hyperbolic and 
AT < 0 requires that \PX\ > VMI/*sIPy, where fis= -BT,/BX 

(Table 1). The conditions of the contact mode (Table 1) can 
be written as 

-sPx>- (/J.+ l/^D-Py and -sPs<ixPy. 

Since Lt > ltisl and/x > l/2(/x+ l<%l) > V n W , it is evident 
that within these constraints the energy change AT < 0 is true. 
• C-reversed sliding: 

2AT= 
M 

Pi-iBi + sixBt )PxPy + s^BiP], 

The conditions for the contact mode are sB3 > 0 and ix < 
l/ijl, where /is = -B3/B1. 

The determinant of the quadratic form is found to be 

^ ( 1 + f t / l ^ l ) 2 -B\ 1 >0. 

Therefore, AT < 0. 
• R-reversed sliding: 

2AT=-
sBi -, •> 

— Pj+ (B^-SfiB^P^ + s^Py 

Considering the conditions sB3 > 0 and 0 < fi < I /xs I, we 
found the determinant of the quadratic form to be 

B\ 1 - i ( l - ^ / l ^ l ) 2 >0 

yielding AT < 0. 
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A Projection Method Approach to 
Constrained Dynamic Analysis1 

The paper presents a unified approach to the dynamic analysis of mechanical systems 
subject to (ideal) holonomic and/or nonholonomic constraints. The approach is 
based on the projection of the initial (constraint reaction-containing) dynamical 
equations into the orthogonal and tangent subspaces; the orthogonal subspace which 
is spanned by the constraint vectors, and the tangent subspace which complements 
the orthogonal subspace in the system's configuration space. The tangential pro
jection gives the reaction-free (or purely kinetic) equations of motion, whereas the 
orthogonal projection determines the constraint reactions. Simplifications due to 
the use of independent variables are indicated, and examples illustrating the concepts 
are included. 

1 Introduction 
Over the years several methods for obtaining constraint re

action-free (or purely kinetic) equations of motion for systems 
subject to constraints have been introduced and compared to 
each other with respect to algebraic complexity and ease of 
practical applications. Lagrange-type equations, Gibbs-Appell 
equations, Kane's equations, Maggi's equations, and Boltz-
mann-Hamel equations may serve as examples of these meth
ods. The equations are derived usually by using the virtual 
formalism, e.g. the concepts of virtual displacement and virtual 
work. Although it is an efficient and reliable mathematical 
technique, geometrical insight into the problems solved is very 
often missing. This causes that a reader encountering the pres
entation of the methods may find them difficult to be inter
preted and, in a way, artificial. Moreover, the methods, aimed 
at automatic elimination of constraint forces, usually do not 
answer the problem of how to determine the constraint re
actions (which may be of importance in practical applications). 
The user of a particular method (the Lagrange's equations for 
instance) does not often define the constraints at all, and may 
be unaware of the constraint idealness being postulated. Fur
thermore, the cases of systems subject to holonomic (geo
metrical) and nonholonomic (nonintegrable kinematical) 
constraints are usually treated seperately. The same refers to 
the problem of derivation of dynamical equations of motion 
in generalized coordinates and quasi-coordinates (quasi-veloc-
ities). 

The objective of this paper is an attempt to give a unified 
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2On leave form the Technical University of Random, Department of Me-' 
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and compact approach to the aforementioned topics. The for
mulation proposed originates mostly from the idea of the' 'pro
jection method" formulated by Scott (1988). To introduce the 
technique, let us consider a particle motion on a smooth sur
face. The solution proposed by Scott consists of resolving 
forces and accelerations along the tangent and normal direc
tions to the particle path. In other words, Newton's laws are 
projected onto the local tangent plane to the constraint surface 
at the location of the particle, and the direction orthogonal to 
the plane there. The tangential projection gives the kinetic 
equations of motion, whereas the orthogonal projection de
termines the constraint reaction. The concept is generalized to 
a many-particle system characterized by an independent set of 
generalized coordinates. The Scott's approach is then extended 
by Storch and Gates (1989) to a many particle system with 
linear nonholonomic constraints, and the equivalence of that 
formulation and Kane's equations is reported. 

The content of this paper generalizes Scott's approach con
siderably and comprises the well-known orthogonal comple
ment technique, Kane's form of Appell's equations, and 
Maggi's equations. For reasons of generality, the starting point 
of the present analysis are the governing equations of an n-
degree-of-freedom unconstrained system. In other words, the 
analysis is carried out in the n-dimensional (configuration) 
space, and the system's motion in the space is interpreted as 
the motion of a generalized particle having n coordinates. If 
m independent constraints are imposed on the system, the 
associated constraint vectors span an /K-dimensional subspace. 
Appealing to the example of particle moving on a smooth 
surface, let us call the /w-subspace an orthogonal subspace, 
and its ̂ -dimensional (k = n-m) complement in the «-space— 
a tangent subspace. The projection of the initial dynamical 
equations into the orthogonal and tangent subspaces is the key 
of the approach proposed. The tangential projection gives the 
constraint reaction-free (or purely kinetic) equations of mo
tion, and the orthogonal projection serves for determination 
of the constraint reactions. 

In the projection method formulation reported in this paper, 
holonomic and nonholonomic constraints are given equal 

Journal of Applied Mechanics SEPTEMBER 1992, Vol. 59 / 643 

Copyright © 1992 by ASME
Downloaded 03 May 2010 to 171.66.16.21. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



treatment, and the analysis starts from the constraint equations 
transformed to the second-order kinematical form. However, 
some simplifications due to the use of independent coordinates 
and/or velocities are indicated. In these cases, the projection 
method is shown to lead to slightly modified, and in a way 
generalized, Kane's form of Appell's equations and Maggi's 
equations, respectively. The theoretical considerations are il
lustrated through practical applications. 

2 Problem Formulation 
As a means of introduction, consider a mechanical system 

characterized by n generalized coordinates x={xx x„]T. 
The equations of motion of the system can be written in the 
following matrix form 

Mv = h\ (la) 

x=Av + a0, (lb) 

where M(x, t) is an n x n symmetric positive-definite matrix, 
v=[vu ..., v„]T is a column matrix representation of kine
matical parameters, A (x, t) is an n x n invertible (tranfor-
mation) matrix, h*(v, x, t) and av(x, t) are « x l matrices, 
and t is the time. On the other hand, from the point of view 
of the vector space and tensor algebra analyses, M can be 
interpreted as the metric tensor matrix of the base eu = [eul, ..., 
em]T, M=e„el; v and x are the contravariant representations 
of the vectors v and x in the bases ev and ex, respectively, 
v = vTe„ and x = xTex; and h* is the covariant representation of 
the applied and centrifugal force vector in the base e„, 
h = h*Tev. The superscript (*) denotes here the covariant rep
resentations of vectors and contravariant base vectors, e.g., 
e„ = Me„, and v* = Mv(v* denotes the representation of in-
ertial forces). Note that all the position, velocity, and accel
eration vectors are represented by contravariant components, 
whereas the force vectors are represented by covariant com
ponents. The distinction between the contravariant and cov
ariant components of vectors is essential in the following 
formulation as they transform differently when reference 
frames are changed, see, e.g., Sokolnikoff (1951). 

Equations (1) are meant here as the initial governing equa
tions of the unconstrained system. For generality, this will 
apply, however, not only to the usual meaning of the uncon
strained system, that is a system being an assembly of uncon
strained particles and/or bodies, but also to a system whose 
dynamics has been previously formulated in the independent 
coordinates by any method. This meets, for instance, the re
action-free equations of motion of interconnected body sys
tems. 

Equation (lb) describes a transformation between the gen
eralized velocities x and the kinematical parameters v which 
are often introduced in practical applications. The kinematical 
parameters are either new generalized velocities when adequate 
components of 

v = Bx + b0, (2) 
where B = A~[ and b0= -A~[a0, are integrable, or quasi-ve-
locities when the components are not integrable. In particular, 
for b0i = 0, the /th component of (2), Vj = B(l)x, where BM is 
the /th row of B, is a new generalized velocity if the Jacobian 
dBu)/dx is a symmetric matrix, e.g., dB}')/dxk=dBJ;'

)/dXj, j , 
k = 1, ..., n, for details refer to Nejmark and Fufajev (1967, 
Chap. 1.7). Otherwise, v, is a quasi-velocity. For brevity in the 
following, v will be called the vector of quasi-velocities. 

Assume then that m-independent constraints are imposed 
on the system, and introduce the constraint equations in the 
second-order kinematical form 

Cxv + c*xo = 0 (3) 

where Cx(v, x, () i s a n m x n constraint matrix of maximal 
rank, and the so-called constraint vectors (Kamman and Hus

ton, 1984) are contained in C^as columns; and cxo(v, x, t) is 
an m x 1 matrix. Since Cxb can be interpreted as dot products 
of the constraint vectors and the acceleration vector v, the 
columns of C{~ are the covariant representations of the con
straint vectors in the base e„. If there are geometrical, f(x, 
t)=Q, and/or first-order kinematical; <p(v, x, t)=Q, con
straints on the system, they are to be transformed to the form 
(3) by differentiating with respect to time twice or once, re
spectively. In these cases, Cx and cxo are 

f^4 forf(x, 0 = 0 (4a) 
dx 

c\= , 
-f for^f. x, t)=0 (4b) 

\av 

. WxA)V+(fxa° + f) *»/<*• <>=° ^ 
C\0 — ) 

I 00 00 
\-f(Av + a0)+^: foT<p(v,x,t)=0. (5b) 
\ox at 

Evidently, the transformation of / = 0 and <p = 0 into the form 
(3) yields appropriate conditions imposed on the initial values 
vQ and XQ. 

The constraints (3) imposed on the system introduce reac
tions which must occur in the dynamic Eq. (la). A class of 
ideal constraints will be considered here, which yields that 
constraint reactions are postulated to be collinear with the 
associated constraint vectors. Hence, the constraining gener
alized forces applied to the system due to the constraints (3) 
can be represented in the directions of v as follows: 

m m 

1=1 ;'=1 

where \ = [X̂ , ..., \m]T is the vector of undetermined multi
pliers, and cx, is the /th column of C[. 

The form (6) of the constraining forces r* may also be derived 
by using the Gauss' principle of least constraint. In the sense 
of that principle, ideal constraint reactions minimize a Gauss'/ 
GibbsVAppell's functional (an acceleration energy function) 
(for details see Nejmark and Fufajev (1967), Pars (1961)) 

Z = -bT(Mv-h*-r*)=0. (7) 

The stationary condition is equivalent to the following demand 

bZ = obT(Mv-h* - r* )=0 . (8) 
Since for the unconstrained system o v T(m v - h *) = 0, the ideal 
constraint reactions must satisfy the condition 

8vTr* = 0, (9) 

which compared with the condition of constraints (3) 
Cx5v=0 or 5vrCl=0, (10) 

yields that r* must be collinear with the constraint vectors. 
Hence, the relationship (6) is evident. 

Since 5L> = [<5L>1, ..., Si),,]7 must satisfy the conditions (10), 
only k = n~m components of bv are independent. Hence, the 
values of X at every instant of the system's motion must be 
fitted such that the coefficients accompanied in (8), the de
pendent components of 5t>, be equal zero. This leads to the 
following set of governing equations of motion for a system 
with ideal constraints: 

Mb=h* + C{\, (11a) 
x=Av + a0, (116) 

Cxv + c*xo = 0. (lie) 
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3 Projection Method Formulation 

Denote the column matrix representation of constraint vec
tors by ex = [exi, •.., eXm]T, the covariant components of which 
in the base e„ are contained in Cx as columns. In principle, 
ex are independent (rank(Cx) = max = /w), hence, a set of 
k = n-m independent vectors eT=[eTU .'.., eTk]

T, assume or
thogonal to ex, exist. Noting that eT are represented by cotra-
viant components in the base ev which are contained in C^ as 
columns (CT(v, x, t) is a kxn matrix of maximal rank), the 
orthogonality condition can be written as 

CTCl=0 • or CXCT
T=Q, (12) 

( = CT is an orthogonal complement of Cx in the n-dimensional 
space). On the other hand, (12) represents the dot products, 
eTel or exej of orthogonal vectors (recall that ex are 
represented in c£ by covariant components, whereas eT are 
represented in CT

r by contravariant components). 
Since the vectors e' = [ex, ej] rare linearly independent, they 

form a new base in the n-dimensional space. Hence, the fol
lowing formula for the transformation of the base vectors can 
be written 

CXM~ 

CT 
e„=Te„ (13) 

where e„ and e' are covariant base vectors here. Since the 
dynamical Eqs. ( l ie ) are represented in covariant components, 
the (covariant) representation of the equations in the base e ' * 
is equivalent to the left-sided multiplication of (11a) by the 
transformation matrix T. Noting that ex span an orthogonal 
subspace, and eT span a tangent subspace, the resulting dynamic 
equations in the base e'* can be decomposed (= projected 
into the two subspaces) as follows: 

Cxi> = CXM~ '/!* + C^M- lCl\ (14a) 

CTMv = CX- (14*) 

Now, ( l ie ) , (146), and (116) form a new set of governing 
equations which can be written as 

TMv = h'*, (15a) 

x=Av + a0, (156) 

where/;'* = [ - c x I, (CX)T]T- Note that the dimension of (15) 
is reduced to In as compared with the dimension of (11) which 
equals 2n + m. Note also that the tangential projection (146), 
as well as the governing Eqs. (15), are conceptually equivalent 
to the results obtained by Hemami and Weimer (1981) by using 
the orthogonal complement method, and then expanded upon 
by others, e.g., Kamman and Huston (1984), Kim and Van-
derploeg (1986), Liang and Lance (1987), and Angeles and Lee 
(1988). 

The orthogonal projection (14a) may serve for explicit de
termination of undetermined multiplier values, and then for 
determination of constraint reactions. Namely, after consid
ering ( l ie) it follows from (14a) that 

\= -Mx
l(c*X0+CxM~lh*)=Mv, x, t), (16) 

where M\(v, x, t) = CXM~1CX is an mxm matrix (= metric 
tensor of the orthogonal subspace). Then, the /'th constraint 
reaction can be found as 

n=cli\i = r*(v,x,t), (17) 

where cx,- is the /th column of Cx. 
If the constraint Eqs. (3) (( l ie) , the first m equations of 

(15a)) are the transformed forms of lower-order constraint 
equations, direct integration of (15) may yield the constraint 
violation due to the integration numerical errors. There are at 
least two fundamental approaches aimed at avoiding the con
straint violation. The first approach is to apply special inte
gration techniques based on monitoring the constraint violation 
at every step of integration and aimed at reducing the violation, 
and in fact, the methods minimize the constraint violations 

only. The Baumgarte's constraint violation stabilization 
method (see Baumgarte (1972) and Nikravesh (1984)) may serve 
as an example of the approach. The second approach are 
methods based on expressing the dynamic equations in the 
independent variables chosen so that all the constraint con
ditions be satisfied. Kane's form of AppelPs equations (Kane 
and Levinson, 1980, 1985), Maggi's equations (Nejmark and 
Fufajev, 1967, Chap. II. 4; Papastavridis, 1990), Gibbs-Appell 
equations (Desloge, 1988; Papastavridis, 1988), and the co
ordinate partitioning technique (Wehage and Haug, 1982) are 
application ofthe approach. An additional advantage of the 
approach is the reduction of dimension of the resulting dy
namical equations. In this paper the second approach will be 
discussed and extended from the point of view ofthe projection 
method. However, prior to the presentation of the formula
tion, some mathematical relationships will be introduced which 
will be of some use in the further analysis. 

The metric tensor matrix M' of the base e' is 

M' = TMT 
0 

0 
CTMCl 

Mx 0 
0 Mr 

(18) 

where Mx and Mr are the metric tensor matrices of the or
thogonal and tangent subspaces, respectively. From (18) it 
comes evidently that the subspaces complement each other. 

Using (18), an inverse of the transformation matrix T can 
be found as 

0 
T~l=MTT(M')~l=MTT M x ' 

0 AC 
(19) 

Now, let us define the vector of independent quasi-accel-
erations ii = [u, ..., uk]

T, and choose them such that they be 
not represented in the orthogonal subspace. In other words, 
(3) may be treated as a set of m quasi-accelerations which, due 
to the constraints imposed, are always equal to zero. Hence, 
there are only k(=n — m) independent quasi-accelerations. 
Mathematically, it may be stated as 

M' "o" 
u 

0 

MTu 

Cxy + cx0 

* CrMv + c^ 
= TMv + 

- * 
* CT0 

(20) 

where c7fl(y, x, t) is a fc-dimensional vector the meaning of 
which will be made precise later on. From (20), after consid
ering (18), it comes to 

o" 
u — 

- * -
C\0 * _c7o 

v = T'(M')-1\M' 

= CT
ru - (M~lCxMx 'cxo + CT

rM;'erf) = CT
rii + co, (21) 

and the substitution of (21) into (15a) yields 

M' 
~ 0 

u 
- C\0 

* 
C T - 0 ^ 

= 
r ~i 

— eXo 

cX 
(22) 

The first m equations of (22) give the identity 
- cxo = - Cxo, and the remaining k equations are the dynamical 
equations in the independent quasi-accelerations, and are rep
resented in the tangent subspace 

MTii = CX + Crt = h*. (23) 

4 Holonomic Case 

Assume that the m constraints imposed on the system are 
geometrical (holonomic) constraints of the form 

Ax, 0 = 0 . (24) 

The constraints are assumed to be independent, hence, (24) 
can be treated as a set of m curvilinear coordinates which, due 
to the constraints imposed, equal zero at every instant of sys
tem's motion. Then, the position ofthe system can be explicitly 
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expressed by k( = n-m) independent coordinates q=[q\, 
qk]

T. The independent coordinates can be chosen as 

f(x,t) 
g(x, t) 

(25) 

where g is a twice differentiable function chosen such that 
\fT, gT]T describes the coordinate transformation, rank 
((df/dx)T, (dg/dx)T) = max= n. Hence, at least theoretically, 
an inverse relation to (25) exists, that is 

x=x(q, t). (26) 

In fact, the relation (26) is usually formulated a priori without 
mentioning (25). Introduce, then, the vector of independent 
quasi-velocities u = \u\, 
sponding to (16), i.e., 

uk] , and define a relation corre-

q = Du + G?0, (27) 

where D(q, t) is a kxk invertible (transformation) matrix, 
and d0(q, t) is a ^-dimensional vector. 

Differentiating twice with respect to time the relation (26), 
and considering (156) and (27), one can obtain 

v=A JDii + c.,, (28) 

where J=dx/dq is the nxk Jacobian matrix, and c„0 = 
(A~[JD)'u + [A~\jd0 + dx/dt - a 0 ) ] \ Comparing (21) and 
(28), it is evident that 

Cl=A^lJD, (29) 

and taking A (x(q, t)), CT in (29) can be expressed as dependent 
on q and t. Similarly, c„0 in (28) can be expressed as a function 
of u, q, and t. 

One can easily deduce that CT defined by (29) is really an 
orthogonal complement of C\ defined by (4a). Namely, the 
dynamic constraint conditions (3) yield CKbv = Q, and from 
(28) it follows that 5v=A~lJD8u, hence, Cx(A~[JD)Su=0. 
Since bit are independent, Cx(A~lJD) = CxCf=0, which ex
presses the orthogonality condition. 

Now, after substituting (28) into (15a), the reduced-dimen
sion dynamic equations, equivalent to (23), can be found as 

Mrii=(A-lJD)T{h*-McM)=h*, (30) 

where MT= (A'^DfMiA-'JD), and - (A " lDJ) TMcuQ re
fers to cpo from (20) and (23). Considering that Mp = MT(q, t) 
and hT = hT(u, q, t), the set of new governing equations of 
motion, (30) and (27), is equivalent to the initial governing 
equations (1) of the unconstrained system. The dimension of 
the new set of governing equations is reduced to 2k. 

Due to the known a priori relation (26), the formulation 
provided in this section does not require the determination of 
CT as an orthogonal complement of C\, which may be a cum
bersome task in practical applications. Moreover, the analyt
ical formulation of the imposed constraints is not necessary 
for obtaining the tangent dynamical Eqs. (30) either. Note also 
that f(x(q, t),t)) =0 . 

When the constraint reactions are to be found, C\ and C\0 

must be determined according to (4a) and (5a). Then after 
substituting x = x(q, t) and v=v(u, x, t), the undetermined 
multipliers and the constraint reactions can be found from (16) 
and (17) as functions of u% q, and t. 

The tangent dynamical Eqs. (30) are a generalized form of 
Kane's form of Appell's equations (Kane and Levinson, 1980, 
1985). Using the nomenclature of Kane's approach, Cf = 
A~ JD = dv/du = dv/dii= ..., corresponds to the matrix of 
so-called partial velocities. Hence, Kane's formulation 

dv 

du 
(-Mv + h*)=Q (31) 

is also a projection of the dynamical equations of uncon
strained system into the tangent subspace relative the con
straints imposed. 

5 Nonholonomic Case 

Assume now that the system is subjected to m first-order 
kinematical (nonholonomic) constraints 

<p(v,x,t)=0, (32) 

where <p=[<pi, ..., <p,„]T are at least once differentiable func
tions, and the maximal rank of the Jacobian matrix d<p/dv is 
demanded. Most often linear nonholonomic constraints are 
encountered, see Nejmark and Fufajev (1967, Chap. 1.1), i.e., 

•<P = Ev + e*0=Q, (33) 

where E(x, t) i s a n m x « constraint matrix of maximal rank, 
and e0 (x, t) is an w-dimensional vector. As opposed do the 
kinematical (= differentiated) form of geometrical constraints, 
(33) are assumed to be nonintegrable (see the comments fol
lowing (3) in Section 3 of this paper). 

By analogy to the holonomic case formulation of Section 
4, the nonholonomic constraint equations, (32) or (33), may 
be interpreted as m new quasi-velocities which, due to the 
constraints imposed, remain zero. Hence, k{=n-m) inde
pendent quasi-velocities u = [u{, ..., uk]

T can be constructed 
as follows (note that nonholonomic constraints do not reduce 
the number of generalized coordinates describing the system's 
position in the M-dimensional space): 

<p(v, x, t) or Ev + ea 

y(v,x, t) 
(34) 

Now, assuming that rank ((d<p/dv)T, (dy/dv)T) = max = n, 
the following (inverse) relation exists (at last theoretically): 

v=v(u, x, t). (35) 

In practical applications, however, the relation (35) is usually 
difficult to be formulated a priori. Hence, for nonlinear non
holonomic equations, a general projection method provided 
in Section 3 is recommended. For linear constraints, Maggi's 
approach may be used; which will be shown to be equivalent 
to the projective approach. 

In the case of linear constraints (33), the independent quasi-
velocities are easy to be defined as (compare with (20)) 

M' 
o" 
u = 

0 " 
MTu = 

Ev + e0 

CTMv 
= TMv + (36) 

where CT is an orthogonal complement of E, that is CTET=0, 
and MT is defined by (18). Differentiation with respect to time 
transforms the relation (36) to the form (20), where 

c-k0 = Ev+e0 

* * 
CTO = (CTM) 'v-MTu. 

Since from (36) it follows that 

(37a) 

(375) 

(37c) 

(38) 

the final governing equations of motion can be expressed as 
follows (compare with (23)) 

(39a) 

(396) 

v=CT
Tu- •M^ClMxle0, 

MT(x, t)ii = hT (u, x, t), 

= A(x, t)CT
T(x, t)u + a0(x,t), 

-1/- .7W-1 , where a0 = a0- M~ lCTM\ ' e0. Note that the dimension of (39) 
is reduced to 2n-m = k + n, and the solution of (39) assures 
that the constraints (33) are satisfied in principle. 

As mentioned previously, the mathematical formulation of 
(38)-(39) is equivalent to the Maggi's approach (refer, for 
instance, to Nejmark and Fufajev (1967) and Papastavridis 
(1990)). Here the approach has been slightly modified and, in 
a way, generalized. Following (16) and (17), and considering 
the present meaning of the relations, the reactions of the non-
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'. / ^ 

Fig. 1 Holonomic case illustration: a rigid body plane motion with a 
point constrained to slide along a circle 

holonomic constraints can be determined as functions of cur
rent values of u, x, and t. 

6 Some Applications 
Example 1. Consider a plane motion of a rigid body of 

mass m and (central) moment of inertia J. Expressing the 
dynamical equations of motion in a central body-fixed ref
erence frame, the initial governing equations of the (uncon
strained) body motion can be written in the following form, 
which corresponds to (1), 

m 
0 
0 

0 
m 
0 

0 
0 
/ 

V\ 

Vl 

Vi 

= 

mv3v2 + /^cos*^ + F^siiu^ 
-mviVi- Fxisinx3 + Fx2cosx3 

Mxi 

cl= 
X\C0sx3 + A:2sinji:3 + S 
- X\%mx3 + x2cosx3 

s ( - *isinx3 + x2cosx3) 

(42) 

C\o - V\v2( - *isinx3 + x2cosx3) - (v2v3 + y|s) (ĵ co&x^ + x2sinx3) 

+ v\ + v \ + V2V3S. (43) 

Using (42) and (43), the initial governing equations of the 
constrained motion in the form (11) can be easily constructed. 
Then, following the projection method formulation of Section 
3, the matrix CT (an orthogonal complement of Cx) may be 
found as 

cl= 
- ( - XiSinX) + X2COSX3 0 
Xi cosAr3 + x2sinx3 + s — s 

0 1 
(44) 

(40a) 

Now, the transformation matrix Tcan be formulated according 
to the definition given in (13), and the reaction-free governing 
equations of the form (15) can be derived easily (for brevity, 
these equations will not be reported here). It is worth noting, 
however, that the solution of the equations demands that ap
propriate initial conditions must be given, that isf(x0, 0) = 0, 
and f (f(v0, x0, 0) = 0. 

One may ascertain that the governing equations in the form 
(15) obtained by using the general approach of the projection 
method are rather complicated, and the same refers to the 
problem of determination of the constraint reaction via (16) 
and (17). As stated in Section 3, and amplified in Section 4, 
a more convenient approach is to use independent coordinates. 
For the case at hand, there are two such coordinates, and a 
reasonable choice of them is q = [qt, q2]

T, where q\ is the angle 
of point P position on the constraint circle (see Fig. 1), and 
q2 = x3. Then, the vector of independent quasi-velocities u = [uu 

«2] rcan be stated as w= q (u are generalized velocities here). 
Now, the relation (26) expressing the transformation from 

independent coordinates q to the initial coordinates x is 

cosx3 

sinx3 

0 

- sinx3 0 
COSX3 0 

0 1 

Vl 

Vl 

Vl 

-Av, (406) 

where x\ and x2 are the position coordinates of the body mass 
center in the inertial reference frame, x3 is the angle of the 
body angular orientation (see Fig. 1), vx and v2 are the pro
jections of the body linear velocity onto the axes of the body-
fixed reference frame, and i>3 is the body angular velocity (note 
that V\ and v2 are quasi-velocities whereas v3 is a generalized 
velocity). The external forces applied to the body are repre
sented by the resultant force components Fxi and Fx2 along the 
inertial frame axes, and the torque Mx3 of the forces in relation 
to the body mass center C. 

Assume then that a point P of the body CP = s, is con
strained to slide along a circle of radius p, and the friction 
effects are neglected. Choosing the body-fixed reference frame 
such that P belongs to the first axis of the frame, and coinciding 
the origin of the inertial frame with the center of the constraint 
circle, the (holonomic) constraint equation can be written as 
follows (see Fig. 1): 

/ = -z(x{ + scosx3)
2 + (x2 + 5sinx3)

2 - p2) = 0 (41) 

The geometrical constraint (41) can be transformed to the 
form (3), i.e., Cxi) + cXo = 0. Namely, twice differentiation of 
(41) with respect to time yields 

pcosqi -scosq2 

psinqi - ss'mq2 

Qi 

(45) 

and the Jacobian matrix of the coordinate transformation is 

dx 
dq = 

-psmqi -ssmq2 

pcosqi ~scosq2 

0 1 

(46) 

Using (45), (46), and (406), the relation (28) can be derived 
as 

ps in (^ 2 -g , ) 0 
pcos(q2-qi) -s 

0 1 

» i («2-« i )cos (?2-9 i ) 
-pui(u2-ut)sin(q2~qi) 

0 
(47) 

Formulating the metric tensor matrix MT of the tangent sub-
space spanned by the directions of u, the final reduced-di
mension dynamical equations of motion of the considered 
constrained system are 
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mp - mpscos (q2~q\) 
~mpscos(q2-qi) ms2 + J 

- mpsulsin (q2-q\)~ Fxlpsinq1 + Fx2pcosqt 
mpsu]sm (q2-qx) + Fxlssinq2 - Fx2scosq2 + Mx2 

(48) 

Then, following Eqs. (16) and (17), and introducing the in
dependent coordinates q and velocities u, the multiplier X and 
the constraint reaction r* associated the realization of the con
straint (41) are 

X = (49) 
Fig. 2 Nonholonomic case illustration: a knife-edge problem 

r*=CxA = 
cos(<72-<7i) 
-s in(<72-?i) 
- 5 s i n ( 9 i - ^ ) 

KFX (50) 

where K = J/(J + ms2sin2(q2 - qi)), and Fx = msu\ -
msu2cos(q2 - q\) + Fxicosqi + Fx2smqi. Note that (50) ex
presses (covariant) components of the constraint reaction vec
tor in the base ev. Since e„i and ev2 are orthogonal and have 
the same magnitude, from (50) it comes that KF\ is the con
straint reaction value. 

Example 2. Consider now a well-studied problem of knife-
edged motion, (see, e.g., Nejmark and Fufajev (1967), and 
Papastavridis (1988,1990)). On the assumption that the knife's 
blade remains perpendicular to the motion plane, the initial 
governing equations of the unconstrained system can be taken 
as in (40). Then, assuming that the knife's mass center overlaps 
its edge, and choosing the body-fixed reference frame such 
that the knife's contact point P belongs to the first axis of the 
frame (see Fig. 2), the (nonholonomic) constraint equation can 
be written in the following form 

<P = v2 + sv 3 = 0, (51) 

which expresses the demand of collinearity of the velocity 
vector of point P and the knife's edge. 

Following the mathematical formulation of Section 3; 

C W 0 1 s], 

and the matrix CT can be constructed as 

"0 - s f 
CT~-

Using this, Eqs. (15a) are 

1 0 0 

(52) 

(53) 

(54) 

0 
0 
m 

1 
ms 
0 

^ 
J 
0 

Vl 

v2 

Vl 

s(mviv2 + Fxisinx^- Fx2cosXi) + Mx3 

mv2Vi + Fxicosx-s + .F^sin^ 
(55) 

which, completed with (406), form the reaction-free governing 
equations of the knife's motion. Then, following (16) and (17), 
X and r* (expressed in the base e„) are 

X = -KFX, 

• = c f x = *F\> 

(56) 

(57) 

where K = / / ( J + m s 2 ) , andF^ = - mv}v2 + Fxlsinx3 + FA.2cosx3 

+ ms/J+ Mx3. One may easy ascertain that nFx is the constraint 
reaction value. 

Let us follow now the formulation given in Section 5, that 
is, try to find independent quasi-velocities and express (55)-
(57) by means of them. According to (36), the independent 
quasi-velocities may be defined as 

J+ms1 

mJ 

0 

0 

0 

J+ms1 

0 

"" 
0 

0 

m_ 

0 

«i 

"2 

— 

0 
0 
m 

1 
-ms 

0 
(58) 

which leads to the inverse relation, equivalent to (38) 

V\ 

v2 

Vl 

= 

0 1 

-s 0 
1 0 

r -\ 
U\ 

Ul 
(59) 

Then the final reduced-dimension governing equations in the 
form (39) may be formulated for the case at hand as 

J+ms2 0 

0 m 

= 

U\ 

u2 

s(r 

L 

s (mu\U2 + Fxlsinxi - Fxlcosx3) + Mxj 

msu] + FxXcosxi + _Fx2siru:3 

X\ 

x2 

Xl 

ssinxj cos*3 
- SCOSX3 sinx3 

1 0 

(60) 

(61) 

Using the independent quasi-coordinates u, X and r* defined 
in (56) and (57) can be expressed as functions of u and x. 

Conclusion 
Compact mathematical formulation, unified treatment of 

holonomic and nonholonomic system cases, and intuitive ap
peal as a generalization of simple dynamics problems are the 
main advantages of the proposed projective approach to the 
analysis of constrained systems. The method affords an in
teresting and useful geometrical insight into the problems which 
clarifies the mathematical transformations and makes them 
more comprehensible. The language of vector spaces is used, 
and tensor algebra is applied. The latter enables one to shorten 
the mathematical formulation and supplies the method with a 
reliable mathematical background. 
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Eigenvalue Inclusion Principles for 
Distributed Gyroscopic Systems 
In his famous treatise The Theory of Sound, Rayleigh enunciated an eigenvalue 
inclusion principle for the discrete, self-adjoint vibrating system under a constraint. 
According to this principle, the natural frequencies of the discrete system without 
and with the constraint are alternately located along the positive real axis. Although 
it is commonly believed that the same rule also applied for distributed vibrating 
systems, no proof has been given for the distributed gyroscopic system. This paper 
presents several eigenvalue inclusion principles for a class of distributed gyroscopic 
systems under pointwise constraints. A transfer function formulation is proposed 
to describe the constrained system. Five types of nondissipative constraints and their 
effects on the system natural frequencies are studied. It is shown that the transfer 
function formulation is a systematic and convenient way to handle constraint prob
lems for the distributed gyroscopic system. 

1 Introduction 
In his famous treatise The Theory of Sound, Rayleigh (1945) 

enunciated the so-called inclusion principle, which may be 
stated as follows: 

Theorem 1. For a linear, discrete, self-adjoint vibrating 
system whose natural frequencies are o>^, arranged in ascending 
order of magnitude, if a spring is attached to the system or if 
one point of the system is fixed, the natural frequencies Qk of 
the constrained system are such that 

a)k<:Qk<o)k+u k= 1, 2, ... . 

Vibration and dynamics of distributed gyroscopic systems 
have been extensively studied by Ziegler (1968), Mote (1972), 
Hagedorn (1975), Huseyin (1978), Meirovitch (1980), D'Eleu-
terio and Hughes (1984), and many others. Although it is 
commonly believed that Theorem 1 is also valid for general 
vibrating continua, no proof has been given for distributed 
gyroscopic systems. Meirovitch and Hale (1978) investigated 
the relationship between the eigenvalues of different discretized 
models for distributed gyroscopic systems. They showed that 
the eigenvalues of a discretized model alternate with those of 
the same model modified with an added term in discretization. 
This result, while useful in discretization and numerical anal
ysis, does not deal with distributed gyroscopic systems with 
physical constraints. Recently, the author (Yang, 1991) studied 
several eigenvalue inclusion principles for discrete gyroscopic 
systems with physical constraints. It is found that the natural 
frequencies of a constrained system alternate with those of the 
corresponding unconstrained system. Nonetheless, no work 
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has addressed inclusion principles for physically constrained 
distributed gyroscopic systems. 

This paper prevents several inclusion principles for a class 
of distributed gyroscopic systems under pointwise constraints. 
In Section 2, a Green's function is derived to predict the re
sponse of the unconstrained system. The constraint problem 
is formulated in the s domain in Section 3. The unconstrained 
system is an open loop; the distributed gyroscopic system under 
a constraint is a closed loop with the constraint as a feedback 
controller. The closed-loop transfer function is determined 
based on the system Green's function. In Section 4, five types 
of nondissipative constraints and their effects on the system 
natural frequencies are studied through investigation of the 
poles of the closed loop. The inclusion principles developed 
are illustrated on the axially moving string in Section 5. 

2 System Description 
Consider the linear, distributed gyroscopic system described 

by 

w„(x,t) + Gw,(x,t) +Kw(x,t) =f(x, t),xeE, t>0 (1) 

w(x,t)\l=0 = a{x) w,(x,t),=0 = b(x), X$LE (2) 
Tw(x,t)=0, xtdE, t>0 (3) 

which relate the displacement w(x,t) to the external force 
f(x,t) and the initial conditions a(x) and b(x). Here, £ is a 
bounded, open region in R", n = 1, 2, or 3 with boundary dE, 
(), denotes partial derivative of () with respect to t, G is a 
skew-symmetric,1 spatial differential operator normally evolv
ing from Coriolis acceleration or mass transport, K is a sym
metric, positive definite, spatial differential operator describing 

The operator G is skew symmetric if <.w,,Gw2) = - <Gw,,w<2>, where < •,•> 
is an inner product, and W) and w2 are admissible functions (Meirovitch and 
Silverberg, 1985). 
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the elastic restoring forces of the system, and T is a linear 
operator reflecting boundary conditions. For G = 0(1) is a clas
sical self-adjoint system. 

The eigenvalue problem associated with (1) 

(\l + \kG+K)Vk(x)=Q (4) 

has eigensolutions of the form 

\±k=±iuk v±k(x)=vf±iv[(x), k=\, 2, ... (5) 

The oik and wk(x) are the frequency and eigenfunction of the 
/tth mode of vibration. For nonzero G, vk(x) are usually non-
orthogonal; the system response w(x,t) can not be evaluated 
by the classical model analysis. Nevertheless, w(x,t) can still 
be expressed by a series of vk(x) (Yang and Mote, 1991a), 
which is briefly described as follows. 

Equation (1) is transformed into an equivalent state space 
equation 

z, = Az + Q, z\,=o = Zo(x) (6a) 

where 

z(x,t)--
wt(x,t) 

w(x,t) 
A = Q(x,t) 

(6b) 

-G -K 

-(TH-CS)-
The state vector z belongs to a Hilbert space. The eigenvalue 
problem associated with Eq. (6a) 

A<j>k(x)=yk<j>k(x) (1) 

has eigensolutions of the form 

(\kvk(x) 

vk(x) 
7k = ^k <t>k(x)- k= ± 1 , ±2 , (8) 

where X̂  and vk(x) are given in (5). The adjoint eigenvalue 
problem to (7) is 

A*\pk = K*Pk 

with the adjoint operator given by 

G 1 

-K 0 

The eigenfunctions of the adjoint problem are 

*w-U"w'M- ±1 , ±2, (9) 

where K is the operator from (1). The <f>k and ipk satisfy the 
bi-orthogonality conditions 

^j,<j>k>=2dJk ^j,A<l>k)=2\jdjk (10) 

where the inner product is defined by <Zi,z2> = \iZ\Z2dz with 
zl denoting the conjugate transpose of z\. Assume that the 
sets {4>k} and {i/^j are complete in the Hilbert space. With 
the orthogonality conditions (10), the state vector z(x,t) under 
the Q(x,t) and Zo(x) is determined as 

z(x,t)= \ S(x£,t)z0(x)dt + \ \ S(x£,t-T)Q(Z,T)dtdT 

(11) 
where the two-by-two function matrix 

gu(x,£,t) gn(x,Z,t) 

J2\(x£,t) g22(x£,t) 

~ 032
kvk(x)vk(£) \kvk(x)Kvk(i) 

\kVk(x)vk(i,) vk(x)Kvk(£) 

S(x,{,0» 

-;S M< (12) 

and the super bar denotes complex conjugation. With (4) and 
(12) it is shown that 

g22(x,U)=jtg2i(x,Z,t)-Gg2dx,U). (13) 

By (6) and (11)-(13), the response of the distributed gyroscopic 
system under external and initial disturbances is expressed by 

w(x,t)=\ {g(x,t,t)[Ga(t)+btt)]+g,(x,Z,t)a(l;))clt 

J0J2? 
t-T)M,T)dtdT (14) 

where the Green's function is given by 

g(x,Z,t)=g2l(x,H,t)=z XI eXk'\kvk(x)vk(H). (15) 

The presence of the skew-symmetric operator G makes the 
system (1) nonself adjoint; the system response w(x,t) can not 
be evaluated by the classical modal analysis. The explicit rep
resentation of the bi-orthogonal eigenfunctions 4>k and \pk in 
terms of the modes of vibration (oik, Vk), however, makes it 
possible to express w(x,t) in a modal expansion form. 

3 Transfer Function Formulation 
The distributed gyroscopic system (1) under a pointwise con

straint is considered as a feedback control system. The system 
(1) without the constraint is an open-loop system. The system 
(1) with the constraint is a closed-loop system with the con
straint as a feedback controller. Both the open-loop and closed-
loop transfer functions are obtained, based on which the ei
genvalues of unconstrained and constrained systems can be 
evaluated. 

Open Loop: The Unconstrained System. The Laplace 
transform of (1) with respect to t gives 

(s2 + sG + K)w(x,s) =f(x,s) + Ga(x)+b(x) +sa(x) (16) 

where w( • ,s) and / ( • ,s) are the Laplace transforms of w( • ,t) 
and / ( • , ? ) , respectively. The solution of (16) is given by the 
Laplace transform of (14), i.e., 

w(x,s)= \ W0(x,H,s){f(!;,s) + Ga(ti)+btt)+sa(tt)}d!i 

(17) 

where the open-loop transfer function W0(x,^,s) is the Laplace 
transform of the Green's function g(x,£,t) and is given by 

W0(x£,s) = - X -^vk(x)vk(i). (18) 
lk=±is h k 

The poles of W0(x£,t) are the eigenvalues of X*. of the un
constrained gyroscopic system. 

Closed Loop: The Constrained System. Assume that a con
straint is imposed on the system (1) at xc€E. The constraint 
force is considered as the control force from a feedback con
troller that has a sensor and an actuator both located at xc. 
The constraint force in consideration takes two forms: 

fc(x,s) =5(x-xc)C(s)w(xc,s) (19a) 

if the displacement w(xc,t) is constrained, or 

fc(x,s) = -D^(x~xc)C(s)D„w(xc,s) (196) 

if the slope Dnw(xc,t) is constrained. Here fc(x,s) is the La
place transform of the constraint force, C(s) is the transfer 
function of the constraint (the controller) in the form 

C(s) =,M 
N(s) 
D(s) 

(20) 

where N(s) and D(s) are polynomials in s, ^ > 0 is a gain 
parameter, and Dv() is the directional derivative of ( ) in the 
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direction TJ. For a one-dimensional region E, Dn = d/dx; for an 
n-dimensional region E, x= (X\, ..,, x„), r} = (rji, ..., i„)> 
D„ = Z]=lrij d/dXj, n = 2 or 3. Note that/c(*,5) in (19ft) phys
ically represents a pointwise moment _at xc. 

The total external force f(x,s) =fc(x,s) +fe(x,s), where 
fe(x,s) is the Laplace transform of other external disturbance. 
Substituting the above expression into (17) and using (19), (20) 
gives 

_ N(s)_ 
w{x,s) = W0{x,xc,s)fj.~—-w(xc,s) D(s) 

\ W0(x^,s)feI(i,s)di (21a) 

for the displacement constraint (19a), and 

_ N(s) _ 
w(x,s) =DlW0(x,xc,s)tj.--—-Dx

riw(xc,s) D(s) 

\ W0(x,t,s)fd (Z,s)dH (21b) 

for the slope constraint (19ft), where fei(i;,s) =f?(!;,s) + 
Go (£) +£>(£) + sa(£), D\ and D* are the operator D , acting 
on £ and x, respectively. Solving (21) for w(xc,s) and D*(xc,s) 
and substituting for them in (21) leads to 

w(x,s) = ( Wcl(x,H,s)fM,s)dH (22) 

where the closed-loop transfer function 

Nd(x,Z,s) 
Wcl(x,H,s): 

Dd(s) 
(23) 

with 

Ncl(x,^s) =D(s)W0(x^,s) + ^,N(s)[W0(x,xc,s)lV0(xc,^s) 

-W0(x,£,s)W0(xc,xc,s)] (24a) 

Dcl(s)=D(s)-lxN(s)W0(xc,xc,s) 

for the displacement constraint (19a), and 

Nd(x^,s)=D(s)lV0(x,^s) 

+ fiN(s) [Dl W0 (x,xc,s)D*WD (xc,^s) 

- W0(x.MBffi W0(xc,xc,s)] (24ft) 

Dd(s) =D(s) ~vN(s)D*D\W0(xc,xc,s) 
for the slope constraint (19ft). The eigenvalues of the con
strained gyroscopic system are the poles of Wd(x,t;,s). 

Theorem 2. The eigenvalues of the distributed gyroscopic 
system (1) under the displacement constraint {19a) (the slope 
constraint (19b)) are the roots of Dd(s) = 0 and \/for some 
I if Mxc) = 0 (DVP,(XC) = 0) or N(\i) = 0. 

Proof: See Appendix A. 

Theorem 2 relates to controllability of the distributed gy
roscopic system (1) (Yang and Mote, 1991b). If the constraint 
is away from the nodal points of all modes of vibration, and 
has no pole-zero cancellation, the gyroscopic system is con
trollable for all modes; the constraint will change all the system 
eigenvalues. If the constraint is at a nodal point of the Mi 
mode or has a zero cancelling the Arth eigenvalue X̂ ., the gy
roscopic system is not controllable for the Arth mode; the con
straint will not influence A*. Here the "nodal" points in the 
slope constraint case are the roots of Dnvk(x) = 0, k= 1, 2 

4 Inclusion Principles 
With the closed-loop transfer function Wd(x,^,s), eigen

value inclusion principles are developed for the distributed 
gyroscopic system (1) under pointwise nondissipative con-

O Natural Frequency Clk 

Fig. 1 Natural frequencies of the gyroscopic system (1) under Con
straint 1, By^x^^O for all k 

straints. Assume that the natural frequencies cô  of the uncon
strained system are distinct. (The case of repeated eigenvalues 
will be discussed later in this section.) For the gyroscopic system 
(1) under a nondissipative constraint, its eigenvalues have the 
form iQk, where Qk are the natural frequencies of the con
strained system. In the following analyses the wk and Qk are 
arranged in ascending order of magnitude. 

Constraint 1: A Spring Attached to the Gyroscopic System. 
A spring of coefficient n is attached to the system (1) at xc. 
Two kinds of springs are considered: the linear spring con
straining the displacement w(xc,t), and the rotational spring 
constraining the slope Dtlw(xc,t). The constraint force of the 
linear spring has the form (19a); the constraint force of the 
rotational spring has the form (19ft). The transfer functions 
of the springs are both given by 

C(s)=-n, N(s)=-l, D(s) = l. (25) 

If xc is not a nodal point of any mode of the unconstrained 
system, according to Theorem 2 and (24), (25) the natural 
frequencies Qk of the constrained system are the roots of 

MO)»A,(/O) = i + *0[]- ak 

-£r + c4 
\Bvk(xc)\

2 = 0 (26) 

where 5 = 1 for the linear spring and B = DV for the rotational 
spring. It is easy to see that 

Ai(0)>0, lim /z,(Q) = 

-f OQ and lim h\ (Q) = - oo for all k 

dQ, 
hi(Q)>0 at fte(0, + <») and Q^oik, k=\, 2. .. 

Because h{(Q) is continuous and monotonically increasing on 
(wk, o>k+\) and because h^oi/t + O) and hi(o>k+i - 0 ) have differ
ent signs, there is one and only one root Qk of (26) in (o>k, 
uk+i). No root falls in (0, u{) because hi(0)>0. These indicate 
that uk<Qk<uk+[; see Fig. 1. 

If the point xc is a node of the /th mode of the unconstrained 
system, i.e., Bu/(xc) = 0, hi(aii) is finite. By Theorem 2, co/ is 
a natural frequency of the constrained system. Because h^Q,) 
is continuous and monotonically increasing on (co/_ i, u/+ {) and 
because Jii(oi/~i + 0) and /j1(a) / + 1-0)have different signs, (26) 
has one and only one root in (cu/-i, ";+0- This implies that 
the constrained system has two natural frequencies, Q/_! and 
Q,i, in (w/_i, co/+1). The locations of these two natural fre
quencies depend on the value of hx (u>/) (see Fig. 2): 

(a) co,_1<fi/_1<a>/ = n/<co/+I for hi(o>/)>0; 

(ft) a)/_i<fi/_1 = 6j/=Q/<a)/+1 for hi(wj) = 0; 

(c) O}/^I<QI^1=WI<QI<UI+1 for hi(oii)<0. 
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O Natural Frequency Qk 

Fig. 2 Natural frequencies of the gyroscopic system (1) under Con
straint 1, S^(xc) = 0: (a) h,(w,)>0; {b) /i,(oiJ = 0; (c) h,(<o,)<0 

Note that the constrained system may have repeated eigen
values even if the unconstrained system has distinct eigenval
ues. Thus, a statement is given below. 

Theorem 3. If a spring (linear or rotational) is attached 
to the distributed gyroscopic system (1) whose natural fre
quencies are o>k, the natural frequencies Qk of the constrained 
system are such that 

o>k<Qk<uk+u k=l,2 (27) 

For the unconstrained gyroscopic system with distinct nat
ural frequencies, i.e., wk<oik+i, at most one equality holds in 
(27) for a given k. 

Constraint 2: A Mass Attached to the Gyroscopic Sys
tem. A lumped mass fi is attached to the system (1) at xc. 
The displacement of the mass is the same as w(xc,t). The 
constraint force has the form (19a) with the transfer function 

C(s)=~ns2, N(s)=-s2, D(s) = l. (28) 

According to Theorem 2 and (24a), (28), the natural frequen
cies 0* of the constrained system are the roots of 

h2(Q)=Dcl(ia) = l-fiQ
2J]- <4 

- Q2 + cof 
M * c ) l 2 = 0 (29) 

and ui for some / if vi(xc) = 0. The function h2(Q) has the 
following properties: 

h2(0)>0, lim ft2(Q) = -oo and lim h2(Q) 

= + oo for all k 

— /i 2 ( f i )<0at Q€(0, + oo) and ti*wk, k=l, 2, .... 
dtt 

With the same arguments as in Constraint 1 it can be shown 
that if xc is not a nodal point of any mode of the unconstrained 
system, Q<Q,k<iak<Q,k+\, and that if xc is a node of the /th 

mode of the unconstrained system, i.e., v/(xc)=0, the con
strained system has two natural frequencies, Q( and fi/+1, in 
(o> /_ l , U ; + i ) : 

(a) cj/_i<fi/ = o)/<fi/+i <w/+i for h2(o>/)>0; 

(b) co,_i<Q,= co, = fl/+1<co,+ i for/z2(co,) =0; 

(c) co,_i<fi,<co, = Q,+ 1<oo /+1 for h2(w{) <0 . 

The results are summarized as follows: 

Theorem 4. . If a lumped mass is attached to the distributed 
gyroscopic system (1) whose natural frequencies are o>k, the 
natural frequencies Qk of the constrained system are such that 

a t So)*<B t + i , fii>0, k=\, 2, . . . . (30) 

Constraint 3: Zero Displacement or Zero Slope at a 
Point. The constraints 

w{x„t)=0 and D , w ( x „ 0 = 0 (31) 

often appear in, but are not limited to, boundary conditions 
for strings, bars, beams, membranes, and plates. These con
straints can be considered as the limiting cases of Constraint 
1 when the spring coefficient /n approaches infinity. According 
to Appendix B, the natural frequencies Qk of the constrained 
system are the roots of 

A3(Q) = 2 " 
2 

-^-^\Bvk(xc)\
2 = 0 (32) 

and o>/ for some / if Bi>i(xc) = 0, where B=\ for the displace
ment constraint, and B = Dn for the slope constraint. The prop
erties of h3(Q) are similar to those of h^ti). Therefore, the 
following conclusion is given without proof. 

Theorem 5. If zero displacement or zero slope is imposed 
at a point of the distributed gyroscopic system (1) whose natural 
frequencies are o>k, the natural frequencies Qk of the constrained 
system are such that 

uk<Uk<<jik+u k=\,2, .... (33) 

For the unconstrained gyroscopic system with distinct nat
ural frequencies, i.e., u>k<u>k+\, at most one equality holds in 
(33) for a given k. 

Constraint 4: A Mass Connected to the Gyroscopic System 
by a Spring. A lumped mass m is connected to the system 
(1) at xc by a spring of coefficient /x. The displacement %(t) 
of m is in the direction of the displacement w (xc,t). The motion 
of the constrained system is described by 

w„(x,t) +Gw,(x,t) +Kw(x,t) =/4f (0 - w(xc,t)] 

5(x-xc) +fe(x,t)ml(t) + M(t) -w(xc,t)] = 0 (34) 

where fe(x,t) is the external force. The Laplace transform of 
(34) and elimination of £ gives 

(s2 + sG + K)w{x,s) = 

tTIS — 
~H—2 w(xc,s)8(x-xc)+fe}(x,s)+Fn:(s)5(x-xc) 

ms + n 

where Fj((s) contains the initial conditions of the mass m. It 
is seen that the constraint force has the form (19a) with the 
transfer function 

„2 

C(s). • • "TT 
2 M 

a =—. 
m 

(35) 
s +a 

By Theorem 2, (24a), and (35), the natural frequencies Qk of 
the constrained system are the roots of 

Dcl(m -fi2 + a2- - ^ 2 Z T ^—2\vk(xc)\
2 = 0 (36) 

£r + c4 

and co/ if v,(xc) = 0 for some /. Rewrite (36) as 

Journal of Applied Mechanics SEPTEMBER 1992, Vol. 59 / 653 

Downloaded 03 May 2010 to 171.66.16.21. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



O Niiiiiriil frequency ilt 

Fig. 3 Natural frequencies of the gyroscopic system (1) under Con
straint 4: (a) «6(0,w,); {b) ai(oik,uk+i) and h5(ct)<0 

WSfM 

Distributed Gyroscopic System 

Fig. 4 The gyroscopic system (1) with an attached mass-spring system 

h4(Q)=h5{Q) (37) 

where 

h4(Q)=-Q2 + a2 

hsm^ntfj) "" 2\vk(xc)\
2 = 0. (38) 

The roots of (36) are determined by the intersections of /*4(fi) 
and hs(Q). With the properties 

/!4(fi)>0 for fi€[0,a), rt4(a)=0, A 4 (0)<0 for fi€(a, + oo) 

lim A5(fi)= +oo and Mm / J 5 (Q) = -oo for all k 

—-h5(Q)>0at fl€(0, + oo) andfi^co*, k=\, 2 

the following result can be shown. 

Theorem 6. If a spring connects a lumped mass to the 
distributed gyroscopic system (1) whose natural frequencies 
are u>k, the distribution of the natural frequencies Qk of the 
constrained system depends on the parameter a = \j\i/m (see 
Fig. 3): 

(a) for a€.{0,w\) 

0<f i 1 <a<o) 1 <f i 2 ^ • • • < u t < f l t t i S o i t t i S • • •; (39a) 

(b) for a€(<o*,W(t+i) 

0 < f i i < « i < • • • <Qk<o>k, w*+i <ttk+2=S"A-+2=£ • • • (396) 

654 / Vol. 59, SEPTEMBER 1992 

O NiHiirul frequency U 

Fig. 5 Natural frequencies of the gyroscopic system (1) under Con
straint 5: (a) aefO.u,); (b) a6(ut,wk+1) 

with 

cok<Qk+l<a<o)k+i if hs(a)>0 

u>k<a = Slk+\<<j)k+\ i f / z 5 (a )=0 

wk<a<Qk+i<oik+i ifhi(a)<0; 

(c) for a = wk 

0<O,<coi< • • • <,Qk<a = ci>k<Qk+,<a}k+i< • • -. (39c) 

There are two extreme cases. First, when the spring coef
ficient ix goes to infinity, the mass m is rigidly connected to 
the system (1); (35) becomes C(s) = -ms2, Constraint 2. Sec
ond, when the mass m approaches infinity, its displacement 
£ (t) vanishes rendering the spring attached to the system (1); 
(35) reduces to (25), Constraint 1. 

Constraint 5: A Mass-Spring System Attached to the Gy
roscopic System. The mass-spring system in Fig. 4 consists 
of a lumped mass m attached to the system (1) at the point 
xc, and a spring of coefficient /J. connecting the mass and a 
point in a fixed reference. The displacement of the attached 
mass is assumed to be equal to that of the gyroscopic system 
at xc, w(xc,t). One example of the constrained system is the 
rotating disk with an attached mass-spring system, which is a 
modal of guided circular saws (D'Angelo et al., 1985). The 
constraint has the form (19«) with the transfer function 

s2 + a2 

C(s) = -ii — , N(s) = -s2 

a 

-a\D(s)=a2;a2 = - . (40) 
m 

According to Theorem 2, (24a), and (40), the natural fre
quencies Qk of the constrained system are the roots of 

+ oo 2 

Dc/(m=<x2-n(Q2-a2)Y, J 2\vk(xc)\
2 = 0 (41) 

and a)/ for some / if v/(xc) = 0 or 7V(/co,) = 0. Note that fl = a 
is not a root of (41) since Dd(ia)=a2. So, (41) is equivalent 
to 

h6(Q)=h1(Q) (42) 

where 

heW^T^-i M O W S n2*. 2 M * c ) l 2 - («) 
\l — a ry. — u + o>k 
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The roots of (41) are the intersections of h6(Q) and /i7(Q), 
With the properties 

A6(fi)<0for ft€[0,a), A6(Q> 
> 0 for fi€(a, + oo), h6(a±0) = +00 

/!7(0)>0, Km h7(Q) = +00 and lim h7(Q) = 

• 00 for all k 

dQ 
/!7(fi)>0 at fi€(0,+ 00) and Q^wk, k=l, 2, ... 

the following theorem can be proven. 

Theorem 7. If the mass-spring system (40) is attached to 
the distributed gyroscopic system (1) whose natural frequen
cies are oik, the distribution of the natural frequencies Qk of 
the constrained system depends on the parameter a = V\i/m. 
(see Fig. 5): 

(a) for <x£(Q,w\) 

0 < a < n 1 < u 1 < f i 2 ^ " 2 ^ • • S (44a) 

(b) for a£(uk,uk+l) 

CO! <fl] < • • • <o)k<Qk<a 

<nk+l<(J3k+l<Qk+2<(J}k+2<- • •; (44b) 

(c) for a = wk 

Wi <0j < • • • <to£_iO*_i <o>k = Slk = a 
<Qk+l<o)k+1<---. (44c) 

When a, the natural frequency of the mass-spring system, 
is less than the first natural frequency coi of the unconstrained 
gyroscopic system, the whole spectrum of the constrained sys
tem shifts downward showing the dominant inertia effect of 
the constraint; see (44a). When a is larger than a>i, the system 
spectrum is divided into two parts (see (44b)): below a, all 
natural frequencies shift upwards due to the dominant spring 
effect of the constraint; above a, all natural frequencies shift 
downwards due to the dominant inertia effect of the constraint. 
When a coincides with the kth natural frequency a>k, the con
straint (40) has a zero cancelling the eigenvalue \k, and there
fore has no influence on the kth natural frequency; see (44c). 

Five types of constraints have been studied. Many other 
constraints can be treated in a similar manner. Also, the idea 
presented in this paper can be easily extended to distributed 
gyroscopic systems with repeated eigenvalues. In this case the 
eigenvalue problem associated with (1) is 

(\2
k + \kG + K)vkl(x)=0, \k=iuk, k=l, 2, ..., 1=1, 2, ...rk 

where \k and vk!(x) are the eigensolutions with rk multiplicity 
of X .̂ It can be shown that the open-loop transfer function 

W0(x£,s) 
^ = 4 . 1 ( = 1 ^ A * 

Analyses of the natural frequencies of the constrained system 
follow the same steps as in Sections 3 and 4. Results similar 
to Theorems 3 to 7 are expected. 

5 Example 
The results in the previous section are illustrated on the 

axially moving string. For a uniform axially moving string 
travelling at a constant velocity between two fixed eyelets sep
arated by a unit length, its transverse displacement w(x,t) 
(Skutch, 1897) is described by 

w„(x,t) + 2c— w,(x,t) - (1 - c2) —2 w(x,t) =f(x,t), 
ox ox 

xe(0,l), ?>0; w(0 ,0=0 w(l,t)=0, t>0 (45) 

where c< 1 is the dimensionless transport speed of the string, 

and x is the coordinate of the point of the string measured in 
a fixed reference. The differential operators in (1) for the 
system are 

d , d2 

G = 2 c - K=-(l-c2)1—2. 
ox ox 

The solutions of the eigenvalue problem (Mote, 1972) 

X2 + 2cX-
dx ( 1 - C ) ^ 2 v(x)=0, p(0) = v(l) = 0 

are 

X/v = iwk = ikr(l - c2), vk(x) = aksin k-Kxe'kmx, 

i = ^l,k=l,2, ... (46) 

where ak are constants. 
Attach a spring of coefficient /i to the string at x = xc; i.e., 

•—w(xc + 0,t)- — w(xc-0,t)=liw(xc,t). (47) 
bx bx 

The characteristic equation of the string (45) under the con
straint (47) is 

fi sin/3xcsinJS(l -xc) „ „ fl 
1+-

l - c z = 0,0 = 
\-cl (48) 

iSsin/3 

The natural frequencies of the constrained system are 
fl/v = Pk(l - c2), k = 1, 2, ..., where (3k are the nonzero roots of 
(48). Theorem 3 predicts that 

^ ! l i < U i t i , k=\, 2, ... 

which can be shown using (46) and (48). 
Now, let the spring coefficient /x go to infinity; i.e., a third 

eyelet is imposed at the point xc 

w(xc,t)=0. (49) 

The characteristic equation of the string (45) under the con
straint (49) is 

sin/3xc.sin/3(l - xc) = 0, /3 = j 

which gives 

Qk = kTT 
(1 -c 2 ) 

and kit 
(1 -c 2 ) 

k=\, 2, ... 

(50) 

(51) 

Comparison of (46) and (51) gives 

o)k<Qk<uk+u k=l, 2, ... 

which is (33). 

6 Conclusion 
Several inclusion principles have been presented for distrib

uted gyroscopic systems under pointwise, nondissipative con
straints. When a distributed gyroscopic system is modified with 
an added spring (or a lumped mass), its natural frequencies 
will increase (or decrease), and alternate with those of the 
unmodified system. With the transfer function formulation, 
many other constraint problems for distributed gyroscopic sys
tems can be investigated in a systematic and convenient way. 
The inclusion principles obtained can be used to develop al
gorithms for computing eigenvalues of modified vibrating sys
tems, and to estimate the bounds of natural frequencies of 
structures. 
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A P P E N D I X A 

Proof of Theorem 2. 
Consider the limit of Wci(x,£,s) as s~Xk for a given k. Write 

s-\k = ee'\ e>0. If vk{xc)=0 or Dvvk(xc)=0, by (18) and 
(24), as s-~Xk, e — 0 and 

e~» 
Wcl(x£,s) Adx,$) 

€ 

0<pi<\Al(x,£)\, Vx, £e£. (Al) 

The limit in (Al) is unbounded indicating that Xk is a pole of 
lVci(x,£,s). If vk(xc) *<J or D„vk(xc) ^ 0 , by (18) and (24), as 
s~\k, e~0, and 

Wci(x,te)-
1 

T2^2(*>£) 
lxXkN(Xk + ee'")\vk(xc)\

2 

0 < p 2 < U2(x,£)l < p 3 < +oo, VJC, | e £ . (A2) 

Recall that p.>0 andcoA:>0. The limit in (A2) has two possi
bilities: 

(i) N{Xk) = 0, the limit in (A2) is unbounded; \k is a pole of 
rVcl(x,ti,s). 

(ii) A^(XAr)^0, the limit in (A2) is determinate and finite; Xk 

is not a pole of Wc/(x,$;,s). 

Note that Nc/(x,^,s) in (24) has no singular points in the 
complex plane other than X̂ .. Besides those X*. which are the 
poles of Wc/(x,t;,s), all other poles of the closed-loop transfer 
function can only be the roots of Dd(s) =0 . 

A P P E N D I X B 

Eigenvalues of the System (1) Under Constraint 3 
Constraint 3 can be considered as the limiting case of Con

straint 1 as the spring coefficient JX goes to infinity. By (23)-
(25), as fi—I- oo, the closed-loop transfer function becomes 

N%(x,%,s) 
Wcl(x£,s)=-

D7,(s) 
(Bl) 

where 

NTi(x,i,s) = W0(x£,s) rV0(xc,xc,s) - W0(x,xc,s) W0(xc,£,s) 

_ >"k\.AC)' 

for the displacement constraint (31a), and 

+ oo 2 
CO* 

D"l(s) = ^ ] 2 ^ 2 M * c ) I 

->*r>£i N?,(x,£,s) = W0(x,£,s)D*D*IV0(xc,xc,s) 
-D^W0(x,xc,s)Dx

vW0(xc^,s) 
+ 00 2 

0>k 

r—•: 5" + ok 

for the slope constraint (31Z?). With a similar argument to that 
in Appendix A, it can be shown that the poles of Wc/(x,^,s) 
in (Bl) are the roots of 

S . »"*• 2^Vk(xc)\
2 = 0 (B2) 

-Q2 + co£ 

and u>ifor some /if Bvt{xc) = 0, whereB=\ for the constraint 
(31«), and B = Dn for the constraint (31 £>). 
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Auto and Cross-Bispectral 
Analysis of a System of Two 
Coupled Oscillators With Quadratic 
Nonlinearities Possessing Chaotic 
Motion 
Auto and cross-bispectral analyses of a two-degree-of-freedom system with quadratic 
nonlinearities having two-to-one internal (autoparametric) resonance are presented. 
Following the work of Nayfeh (1987), the method of multiple scales is used to 
obtain a first-order uniform expansion yielding four first-order nonlinear ordinary 
differential equations governing the modulation of the amplitudes and phases of 
the two modes. The particular case of parametric resonance of the first mode 
considered in this paper admits Hopf bifurcations and a pure period doubling route 
to chaos. Auto bicoherence spectra isolate the phase coupling between increasing 
numbers of triads of Fourier components for a pure period doubling route to chaos 
for the individual degrees-of freedom. Cross-bicoherence spectra, on the other hand, 
yield information about the phase coupling between the two degrees-of-freedom. 
The results presented here confirm the capacity of bispectral techniques to identify 
a quadratically nonlinear mechanical system that possesses chaotic motions. For the 
chaotic case, cross-bicoherence spectra indicate that most of the nonlinear energy 
transfer between the modes is owing to cross-coupling between phase modulations 
rather than between amplitude modulations. 

1 Introduction 
Polyspectral methods present detailed information about the 

nonlinear modal couplings present in a given system. Bispectral 
analysis has been used to study a wide variety of quadratic 
nonlinear systems, including fluid (Yeh et al., 1973; Li et al., 
1976; Helland et al., 1977; Van Atta, 1979; Kim et al., 1980; 
Ritz et al., 1988; Choi et al., 1984), mechanical (Sato et al., 
1977), and a quantum mechanical systems (Miller, 1986). Ni-
kias and Raghuveer (1987) provide a recent review. These 
higher-order spectral analysis techniques provide information 
about a chaotic system complementary to that obtained with 
other methods of dynamical system analyses, such as fractal 
dimension (Farmer et al., 1983) and Lyapunov exponent cal
culations (Wolf et al., 1985). 

Power spectral techniques are adequate for the analyses of 
linear systems, but do not, however, provide information about 
nonlinear interactions between Fourier components in a non-' 
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linear system. Higher-order spectra, on the other hand, can 
isolate and quantify the phase coupling between nonlinearly 
interacting Fourier components. Bispectral analyses of the 
quadratic interactions that produce a pure period-doubling 
sequence to chaos in the Rossler equations resulted in successful 
identification of this system for both nonchaotic and chaotic 
cases (Pezeshki et al., 1990). Further application to mechanical 
systems, such as the magnetically buckled beam governed by 
a Duffing equation was useful for parameter ranges where 
period doubling and other quadratic phenomena dominated 
the dynamics. In the chaotic regime the bicoherence completely 
vanished, consistent with the cubic nonlinearity that dominated 
the system during chaos. The present study presents results of 
bispectral analyses of quadratically nonlinear mechanical sys
tems with two degrees-of-freedom. Such systems govern the 
response of many elastic systems such as ships, elastic pen
dulums, beams, arches, composite plates, and shells (Haddow 
et al., 1984; Nayfeh, 1986). The bispectrum provides detailed 
information about the nonlinear mode couplings on a fre
quency by frequency basis, thus identifying the quadratically 
interacting Fourier components. 

The equations of a system of two coupled oscillators with 
quadratic nonlinearities which govern the response of a ship 
whose motion is constrained to pitch and roll are presented in 
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Section 2. Following the work of Nayfeh (1983, 1983b), av
eraged equations are obtained by the method of multiple scales 
for the case of parametric resonance of the first mode. Tra
jectories of the modulation equations for the pure period-
doubling route to chaos are also presented in Section 2. Def
initions of the relevant bispectral quantities and details of the 
numerics are considered in Section 3. Auto and cross-bico-
herence spectra of the two degrees-of-freedom are presented 
in Section 4. The quadratic interactions resulting in the pure 
period doubling sequence to chaos are isolated by the auto and 
cross-bispectra. Conclusions follow in Section 5. 

2 The Coupled Oscillator 
Comprehensive analyses of coupled oscillators with quad

ratic nonlinearities possessing internal resonances have been 
considered by numerous authors (Sethna, 1965; Nayfeh and 
Zavodney, 1986). Froude (1863) observed that ships have un
desirable roll characteristics when subjected to internal (au-
toparametric) resonance. Mook et al. (1974), Nayfeh et al. 
(1973) and Nayfeh (1983a) provide a detailed analysis of a 
coupled oscillator with quadratic nonlinearities that governs 
the response of a ship that is restrained to pitch and roll. Miles 
(1985) showed that Hopf bifurcations do not exist for the case 
of an internally resonant, perfectly tuned, pendulum when the 
lower mode is excited by a principal parametric resonance. 
Nayfeh (1987) relaxed this assumption, and subsequently found 
Hopf bifurcations and calculated responses with period mul
tiplying bifurcations leading to chaos. 

Following the work of Nayfeh (1987), let U\ and u2 be two 
generalized coordinates which describe the motion of the sys
tem. Formulating Lagrange's equations and considering si
multaneous harmonic parametric and external excitations, 
yields 

tit + w2,U[ + elicit, + <5,«f + 52UiU2 + 83u2 + <54w? 

+ 85« ] ii2 + 56«2 + SvUiM] + 881<2«1 + 89WiU2 

+ 5i0u2ii2+ (/n«i+/i2«2)cos tt1t]=F,cos (Q2? + TI) 

ii2 + w\u2 + e[2ix2ii2 + «!«? + a2U\U2 + a3u\ + a4w? 

+ a$U\U2 + at,u\ + a^iiii + a%u2iii + u$U\U2 

+ awu2ii2+ (f2iu,+f22u2)cos (fii/ 

+ T ) ] = F 2 C O S ( ^ + T2) (2) 

where m and \x2 are the damping coefficients. The F„,fmn, fi„, 
T„, 5„, and a„ are constants and o>i and o>2 are natural fre
quencies. Fi,Qt and F2, fi2 are the amplitudes and frequencies 
of the parametric and external excitations, respectively. The 
parameter e is a small dimensionless parameter which has been 
used as a bookkeeping device in the perturbation analysis. If 
<5i = 63 = S4 = (j>6 = 87 = <510 = a2 = «5 = a8 = a9 = 0, 
the equations that govern the response of a ship constrained 
to pitch and roll are recovered. Using the method of multiple 
scales (Nayfeh and Mook, 1979), U\ and u2 are expanded as 

M f ; e ) = i / io(r0 , Ti)+61*1,(7-0, Tt) (3) 

u2(t;e) = W20(T0, T,)+eu2l(T0, T,) (4) 

where T0 is a fast time scale on which the main oscillatory 
behavior occurs and T„(n > 1) are scales on which amplitude 
and phase modulations take place. 

Time derivatives are given by 

— = D0 + eDi + . . . , ^ 2 = Z>0
: + 2 e A A + . . • (5) 

where D„ = ——. 
dT„ 

Substituting Eqs. (3)-(5) into Eqs. (1) and (2), equating like 
powers of e and solving for O(e0) yields 

0.4U 1 1 1 1 1 u L 

O4IJ 1 1 1 1 1 Li 1 1 1 L_ 
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 

A l 

Fig. 1 Projection of the modulation equations on a1 - a 2 plane for p.„ll 
= 0.02, a2lf = 0.16; (a) period 1 motion, »,// = 0.205; (b) period 2 motion, 
a,lf = 0.2025; (c) period 4 motion, os\i = 0.2014; (d) period 8 motion, 
o,lf = 0.2013; (e) period 16 motion, a,// = 0.20126; ( / ) chaotic motion, 
<r,// = 0.200 

u10 = Al(Ti)e>aiTo + cc (6) 

u70 = A2(Tl)efa2To + cc (7) 
where cc is the complex conjugate of the preceding terms. An 

can be represented by 

A„=\/2ane
iB" for « = 1,2 (8) 

where a„ and )3„ are the amplitude and phase of the nth mode, 
respectively. The particular case of parametric resonance of 
the first mode given by 

Q[=2oo[ + ea2 and u>2 = 2coj + eoi (9) 

is studied here, where a\ and a2 are detuning parameters. Sub
stituting Eqs. (6)-(9) into O(e') equations and annulling the 
resultant secular term gives 

H(AI+IJ.IAI) + 4AlA2Ale
i,'^ + 2fAle

i'r^ = 0 (10) 

2i(A2+^2A2)+4A2AJeh^ = 0 (11) 

where the prime denotes —— a n d / u = 4o>i/. -A, and A2 are 

defined by 

4cO]Ai = d2 + 8s03ioi2 — 5gui — 890)2 (12) 

4o!2A2 = ai — 0:40)1 — ayoji. (13) 

Substituting Eq. (8) into Eqs. (10) and (11) and separating real 
and imaginary parts yields 

ax = - |Uiai-Aiaia2 sin y2 (14) 

a2 = - ix2a2 - k2a\ sin 71 (15) 

P'i = Ata2 cos 71 + / c o s 72 (16) 

/ 3 2 ' = A 2 - i c o s 7 , (17) 

where 

7, = ff17
,
1+/32-2/31 and y2 = a2T1-2(31. (18) 

Equations (14)-(17) were numerically integrated using a fourth-
order Runge-Kutta subroutine with a time step of 0.05. (Tests 
with larger and smaller time steps indicated that 0.05 was 
sufficient for numerical accuracy and stability.) /i„//was fixed 
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at 0.02 and a2/f = 0.16. Varying the value of cV/produces 
a period doubling sequence leading to chaos, as illustrated in 
Fig. 1. 

Although the averaged equations demonstrate chaotic be
havior, an analysis of the original equations has not been 
performed for the chaotic regime. Indeed, this is not the pur
pose of the present work. Further work is needed to confirm 
whether the multiple scales analysis actually represents the 
physical system in the chaotic regime. 

3 Spectral Analysis and Numerical Details 
Consider a discretely sampled time series T]m(t) with the 

Fourier representation 

V,„(t)= ][]A„("n)e ' t V + ̂ ( cOe~ ' ' < v (19) 
n 

where the subscript m = 1, 2 refers to each degree-of-freedom 
and the asterisk indicates complex conjugation. The power 
spectrum of mode m is defined as 

Pm(ul)=E\Am^l)A*m(ui)] (20) 
where E[ ] is the expected value. The auto bispectrum of 
mode m and the cross-bispectrum between modes m and n are 
defined, respectively, as 

Bm(o>uw2) = E[Am(u1)A„,(w2)A*m(ui + o)2)] (21) 

XBm,„(b>ua2)=E[Am(wl)Am(<1>2)A„ (o>i + co2)]. (22) 

The normalized magnitude of the bispectrum, known as the 
squared bicoherence, is given by 

lfim("i,"2)l2 

bm(ul,o>2)=- (23) 
-Pm(Wi)Pm(c02)P,„(C01 + W2) 

and the normalized magnitude of the squared cross-bicoher 
ence is given by 

xbmi„(ui,u2) = -
\Bmt„(uu 0)2)1" 

(24) 
Pm ( "1 )Pm ( "2 )P„ ( "1 + W2 ) 

The squared bicoherence represents the fraction of power at 
the sum frequency (c^ + co2) of the triad owing to quadratic 
interactions between the two other Fourier components (coi 
and o>2). 

The time series produced by the numerical integrations of 
Eqs. (14)-(17) were sampled (in dimensional units) at 1 Hz, 
and subdivided in 32 segments, each of 128 s duration for 
processing, resulting in a frequency resolution of 0.0078 Hz 
and 64 statistical degrees-of-freedom. Bicoherence values of b 
> 0.40 are statistically significant at the 95 percent level for 
64 degrees-of-freedom (Haubrich, 1979). Although higher fre
quency resolution was possible, the associated decrease in sta
tistical stability of bispectral estimates was deemed 
unacceptable. The frequency resolution used here is sufficient 
to resolve the power spectral primary peak, its super harmon
ics, and one subharmonic. Finer frequency resolution does not 
alter any of the conclusions that will be presented as follows. 

4 Results 
Phase-plane portraits of the period-doubling route to chaos 

are shown in Fig. 1. Power spectra for the first and second 
degree-of-freedom motions corresponding to period one, two, 
four, eight, sixteen, and chaotic motions are presented in Figs. 
2 and 3, respectively. The harmonic structure is clearly dis
played in the power spectra. For period-one motion, the spec
trum is dominated by a primary spectral peak at / = 0.045 
Hz and its higher harmonics for the first-degree-of-freedom 
motion (Fig. 2a). For period two and subsequent period-dou
bled motion, the subharmonic ( / = 0.0215) is excited (Fig. 
2(b)-2(f). The subharmonics for period four, eight, and six
teen are not resolved owing to the frequency resolution used, 

o.o 0.2 0.4 0.0 0.2 

FREQUENCY (Hz) 
0.4 

Fig. 2 Power spectra of the first-mode amplitude modulations; (a) pe
riod 1 motion; (b) period 2 motion; (c) period 4 motion; (d) period 8 
motion; (e) period 16 motion; ( f) chaotic motion. The units of power are 
arbitrary. 

as discussed above. Owing to the quadratic nonlinearities, the 
spectrum contains peaks at frequencies corresponding to sum 
interactions between the subharmonic, the primary, and their 
harmonics. For the second degree-of-freedom motion shown 
in Fig. 3, intermediate frequencies, in addition to the subhar
monic, the primary, and their harmonics, are excited by the 
cross-couplings of both the degrees-of-freedom. Bicoherence 
spectra quantify the coupling of and energy exchange between 
triads of Fourier components as the system progresses toward 
chaos as <ri//is decreased from ox/f = 0.205 to o\/f = 0.200. 
Auto-bicoherence spectra for the first and second degree-of-
freedom motions are presented in Figs. 4 and 5, respectively. 
For periodic motions, the coupling is centered about the dom
inant frequencies composing the limit cycles. Through the pe
riod doubling cascade up to period 16 motion (Figs. 4(a)-
4(d) and 5(a)-5(d), additional Fourier components are non-
linearly excited by quadratic interactions between the dominant 
frequency and itself, as well as smaller interactions among the 
superharmonics and subharmonics. 

The spread of nonlinear interactions to include more Fourier 
components as ffi//is reduced from 0.205 to 0.2014 is shown 
by the increasing number of triads with high auto-bicoherence 
in Figs. 4(a)-4(d), 5 (a)-5(d). For ax/f corresponding to 
0.2013 and less, the superharmonics decrease in level (Figs. 
2(e)-2(f) and Figs. 3(e)-3(/)) as do the bicoherence of triads 
containing these superharmonics (Figs. 4(e)-4(f);5(e)-5(f)). 

Figure 6 shows the Fourier component couplings of the first 
degree-of-freedom motion to those of the second (m = 1, n 
= 2). Figure 7, on the other hand, shows couplings between 
frequencies of the second degree-of-freedom motion to the 
first (m = 2, n = 1). Both the figures display the cross-
coupling owing to amplitude modulations of the respective 
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degree-of-freedom motion. The cross-bicoherence increases 
steadily up to period 8 with the reduction of o\/f from 0.205 
to0.2013 (Fig. 6{a)-6(d); Fig. 7(a)-l(d)). For aw/< 0.2013, 

0.4 0.0 0.2 
FREQUENCY (Hz) 

Fig. 3 Power spectra of the second-mode amplitude modulations; (a) 
period 1 motion; (b) period 2 motion; (c) period 4 motion; (d) period 8 
motion; (e) period 16 motion; ( / ) chaotic motion. The units of power are 
arbitrary. 

the superharmonics are suppressed, resulting in the reduction 
of the cross-bicoherence (Figs. 6(e)-6(/) and7(e)-7(/)). The 
auto and cross-bicoherence spectra suggest that there is very 
little nonlinear energy transfer between amplitude modulations 
during chaos; in other words, there is very little cross-coupling 
owing to amplitude modulations in the chaotic regime. If both 
the modes are decoupled (i.e., if <s>2 ^ o>{), then the system of 
averaged equations cannot exhibit chaos, as is true for a sec
ond-order homogeneous system. Consequently, in order to 
admit chaos, there must be a strong cross-coupling between 
the phase and amplitude modulations or between the phase 
modulations of the two modes. Cross-bispectra between am
plitude and phase modulations are small (Figs. 8(«), 8 (£>)), 
thus negating the first possibility. On the other hand, there is 
very strong cross-coupling of the phase modulations, as dem
onstrated by high values (as great as xb = 0.8) of cross-bi
coherence between the phases of the two modes of motion 
(Fig. 8(a)-8(c)). Thus, the entire source of coupling, or the 
nonlinear energy transfer is through the cross-coupling of phase 
modulations in the chaotic regime. 

5 Conclusions 
Auto and cross-bicoherence calculations were performed for 

a system of two coupled oscillators with quadratic nonlinear -
ities possessing chaotic motions. Since the nonlinear interac
tions among the Fourier components are quadratically 
nonlinear, they are characterized by the auto and cross-bico
herence both outside and inside the chaotic regime. The period 
one, two, four, eight, sixteen, and chaotic trajectories all pos
sessed strong auto bicoherence, originating primarily from in
teractions involving the fundamental frequency of oscillation. 
There is negligible cross-bicoherence between the amplitude 
modulations in the chaotic regime. On the other hand, there 
is a strong cross-coupling of the phases. In the averaged equa
tions, the cross-couplings of both the amplitude and phase 
modulations must be assessed (e.g., with bispectral analysis) 
in order to understand the dynamics of nonlinear energy trans
fer. 

The different bispectral analyses presented here clearly show 
the coupling mechanisms responsible for chaotic motion of 
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Fig. 4 Contours of auto-bicoherence of the first-mode amplitude mod
ulations. /, and f2 are shown, while the sum frequency /, + t2 is implied. 
The minimum contourplotted is b = 0.40, with contours every 0.1. Panels 
(a)-( f) are described in the caption to Fig. 1. 
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Fig. 5 Contours of auto-bicoherence of the second-mode amplitude 
modulations. The format is the same as Fig. 4. 
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Fig. 6 Contours of cross-bicoherence between the first-mode ampli
tude modulations (/,, f2) and the second-mode amplitude modulations 
(f, + f2). The minimum contour plotted is xb = 0.4, with contours every 
0.1. The panels (a)-( / ) are described in the caption to Fig. 1. 

this oscillator. Moreover, since they illustrate the wave cou
pling mechanisms and the resulting chaotic transitions, 
bispectra provide a powerful tool for understanding other non
linear, quadratic systems, including those possessing chaotic 
motion. These methods operate solely on time series infor
mation, and thus, they offer a way to distinguish chaotic mo
tion from linear random motion because the bicoherence of a 
linear random time series is zero. 
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Lyapunov Exponents and 
Stochastic Stability of Coupled 
Linear Systems Under Real Noise 
Excitation 
The almost-sure asymptotic stability of a class of coupled multi-degrees-of-freedom 
systems subjected to parametric excitation by an ergodic stochastic process of small 
intensity is studied. Explicit asymptotic expressions for the largest Lyapunov ex
ponent for various values of the system parameters are obtained by using a com
bination of the method of stochastic averaging and a well-known procedure due to 
Khas'minskii, from which the asymptotic stability boundaries are determined. As 
an application, the example of the flexural-torsional instability of a thin elastic beam 
acted upon by a stochastically fluctuating load at the central cross-section of the 
beam is investigated. 

1 Introduction 
Lyapunov exponents play an important role in the modern 

theory of nonlinear structural dynamics. They characterize the 
exponential rates of change of the response of dynamical sys
tems. The vanishing of the largest Lyapunov exponent implies 
a change in the stability property of the response. 

A formulation for the exact evaluation of the largest Lya
punov exponent of linear systems of Ito stochastic differential 
equations was given by Khas'minskii (1967) and has been suc
cessfully employed to determine numerically Lyapunov ex
ponents and stochastic stability conditions for certain two-
dimensional systems (Mitchell and Kozin, 1974). Asymptotic 
expressions for Lyapunov exponents for such systems sub
jected to weak excitations were obtained by Auslender and 
Mil'stein (1983), Arnold et al. (1986), Wedig (1988), Pardoux 
and Wihstutz (1988), and Ariaratnam and Xie (1989). The 
direct use of Khas'minskii's method to higher dimensional 
systems has not met with much success, because of the diffi
culty of studying diffusion processes occurring on surfaces of 
unit hyperspheres in higher dimensional Euclidean spaces. 

In this paper, the stability of a class of coupled multi-degrees-
of-freedom systems subjected to parametric excitation by an 
ergodic stochastic process of small intensity and short corre
lation time is considered. The motivation for the study stems 
from certain problems in the dynamic stability of elastic sys
tems subjected to stochastically fluctuating loads. The sto
chastic moment stability of such systems was examined 
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previously by Ariaratnam and Srikantaiah (1978) using the 
method of stochastic averaging. In the present study, the al
most-sure stability of the same class of problems is studied 
using a combination of the method of averaging and the tech
nique of Khas'minskii (1967). Explicit asymptotic expressions 
for the largest Lyapunov exponent for various values of the 
system parameters are obtained. The result for single-degree-
of-freedom systems is obtained in the special case when the 
coupling parameters are set equal to zero. As an application, 
the example of the flexural-torsional instability of a thin elastic 
beam acted upon by a stochastically fluctuating load at the 
central cross-section of the beam is considered. 

This paper is an extension to real noise excitation of a pre
vious report (Ariaratnam et al., 1990) that dealt with the case 
of white noise excitation. 

2 Formulation 
The systems considered are described by stochastic differ

ential equations of the form 
n n 

j=\ y = l 

= 0, i=\,2,...,n, (1) 
where the qt are generalized coordinates, j3,j are damping con
stants, w, are natural frequencies, and ky are constants. The 
excitation is represented by %(t), which is taken to be an ergodic 
stochastic process with zero mean value and a sufficiently small 
correlation time. Equations (1) describe exactly the paramet-
rically excited motion of certain nongyroscopic, discrete, linear 
elastic systems with n degrees-of-freedom about the equilib
rium configuration q,(t) = 0. They also describe approxi
mately the motion of certain continuous elastic structures whose 
equations of motion have been discretized by some suitable 
technique such as Rayleigh-Ritz, Galerkin, finite differences, 
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or finite elements. It will be seen later that small cross-damping 
terms such as /3y-, / j± j have no effect on the solution in the 
first approximation. 

When the parametric excitation is a deterministic harmonic 
function of time, i.e., £(/) = e cosatf, it is well known (see, 
e.g., Mettler, 1968) that the instability of the trivial solution 
q = q = 0 occurs when the excitation frequency o> is in the 
neighborhood of o) = co0/m, where m is a positive integer 
determining the order of the instability and co0 depends on the 
nature of the coupling coefficients ky. For o>0 = 2u>„ the regions 
are referred to as instability regions of the first kind and cor
respond to parametric resonance of the subharmonic type in 
which only the particular mode q-, is excited into motion. In
stability regions of the second kind are found for 

CJ0 = a),- + uj (i7*/)> if kijkji>0 

= \o>j-Uj\ (i*j), if kijkji<Q. 

The instabilities occurring when o>0 = lu, ± u>j\ are referred 
to as combination resonances since the excitation frequency co 
is in the vicinity of fractions of the sum and difference com
binations of the natural frequencies. In combination reso
nance, a pair of modes is excited into motion while the 
remaining modes are at rest. 

In Eq. (1), the generalized coordinates <?,(/) and velocities 
q,(t) are transformed to polar coordinates by means of the 
relations 

q-, = a,cos0,-, q-,= -«;co,sm9,-, 0/ = a>/? + 0/,/= 1,2,...,«. 
(2) 

Then, one obtains the equations of motion in terms of a,-(0 
and 0/(0: 

j n n 

a-,= YJ /3#ay«ysin6ysin9/+i;(0 YJ &,y«yCos9ysin9/, 
" / , = ! j=\ 

> , l6,/«,cd/sin9,cos9/ 
«.«- y~7 

1 " 
+ — £ ( 0 Y kydjCOsOjCOsOi. (3) 

y = i 

It is supposed that the damping constants and the stochastic 
perturbation are small, i.e., |3,y = 0(e), S(w) = O(e), •(co) 
= O(e), 0 < Id « 1, where S(co) and ^(u) denote the cosine 
and sine power spectral densities of the stochastic process £(0, 
defined by 

S ( w ) + / ¥ ( w ) = 2 E[HOHt + r)]e'urdT, 

£•[•] denoting the expectation operation. Under these condi
tions, the method of stochastic averaging (Stratonovich, 1963; 
Khas'minskii, 1966) may be applied to Eqs. (3) to yield the 
following Ito equations for the averaged amplitudes a,- and 
phase angles 0/, whose solutions provide a uniformly valid first 
approximation to the exact values (Ariaratnam and Srikan-
taiah, 1978): 

dai = ma.dt + YJ OjjdWj, 
y = i 

n 

ddj = me.dt+^] iijjdBj, (4) 
y = i 

where Wj(t), Bj(t),j = 1 , 2 , . . . , « are mutually independent 
unit Wiener processes and the drift coefficients ma., me. and 
the diffusion coefficients o/y, ny are given by 

-ftv + TT 4-S(2co/) + - f \ kijkjiSJj 
1 6 8 j~7 

yv/ 

1 " a? 

16 
y'=i 
yv/ 

[oo\, = \ klS{2^a} + \ 2 ^S+a), 
8 8ytr 

yVi 

r 1 
[ffff ]0• = - kijkjjSij a-flj, (i T±J) , 

\wT\ii = \ kl[2S(0) + S{2^]+1- J ] kjjSta), 
j=i 
y V 

[w*7];/ = 7 ^yS(O) + - kijkjiStj, (i*j), 

M = [<Jij], [iA = [p-ij\-

In the above expressions, the functions S+, S~, ^ + , ¥~ are 
defined by 

Sy=S( «/ + 0>y ) ± S ( W; - Wy ) , ^ = *(c0, + 0)y) ± * (a)/ - Wy). 

The «-degrees-of-freedom system given by Eq. (1) is difficult 
to study in its general form. Hence, the discussion from now 
on will be restricted to two-degrees-of-freedom systems de
scribed by the equations: 

q\ + 2Pnql + 2(3l2q2 + o)2ql + o>1(knqi + knq2)£(t)=0, 

<72 + 2/32l<7l + 2 f e g 2 + W2<72+C02(£21<7l+£22<72)£(0=(), (5) 

in which, by a suitable scaling of coordinates, it is always 
possible to take/tn = ±k2\ = k > 0, without loss of generality. 
The product \k12k2\\ = k2, however, remains invariant under 
scaling. The results derived for the two-degrees-of-freedom 
system may be generalized to /z-degrees-of-freedom systems (« 
> 2) under certain conditions on the spectral density distri
bution of the parametric excitation (see Section 6). 

For the two-degrees-of-freedom system, the amplitude equa
tions of (4) become 

da1 = midt+andWi + ai2dW2, 

da2 = m2dt + a2ldWt + a22dW2t (6) 

where 

m2 = 

-Pl+-:k2
iS(2ul) + -kl2k2]S-

16 o 

32 + 77 k2
22S(2o>2) + -k12k2lS~ 

10 0 

1 
a>+-k\2S

+a\ 
16 «! 

a2 + ±zk\Xa\ 
16 a2 

[™ r] . i=4 A:?lS(2co1)«? + ^ k\2S
+a2

2, 

[<w ]a = g k2
22S(.2o>2)a

2
2 + - k2

2lS
+aj, 

[ooT]12=[ooT]2l =- kl2k2lS"aia2, 

S ± =S(a) 1 +co 2 )±S( U l -co 2 ) , /3, = /3 n , /32 = /322. 

It may be noted that the averaged amplitude vector (aj, a2) 
is a two-dimensional diffusion process and that the coefficients 
of the right-hand side terms of Eqs. (6) are homogeneous in 
au a2 of degree one. Hence, the procedure of Khas'minskii 
(1967) may be employed to derive an expression for the largest 
Lyapunov exponent of the amplitude process (Ariaratnam, 
1977). To this end a further logarithmic polar transformation 
is applied: 
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p = l-\og{a\ + a2
2), 0 = T a n - ' p 

2 Vfli 
O < 0 < ~ 7T, 

2 
and, by the use of Ito's differential rule or otherwise, the 
following pair of Ito equations governing p, <f> are obtained: 

dp = Q(<t>)dt+L(<l>)dW, 

dct> = i(<t>)dt + ̂ (4>)dW, (7) 

where W(t) is a Wiener process of unit intensity and 

Q(0) = X, cos20 + X 2 s i n 2 0 ± - A : 2 . r + * 2 ( 0 ) , 

*(</>) = - ^ (X, - X2)sin20 + -^ [2(X, + X2 + ft + ft) 
z lo 

-£2S'(a)1±co2)]sin40 + - £2S+cot20, 

1 
XT(0) = (X, + ft)cos> + (X2 + ft)sin> + - klS(co, ±co2) sinz20, 

*2(0) = ^ 2 S + + i [2(X, + X2 + 0, + ft) - /t2S(W| ±co2)]sin220, 

(8) 
in which the upper sign is taken when kn = k2x = A:, and the 
lower sign when k12 = -k2l = A:. The constants \ i t X2 are 
defined by 

X,= - f t + ^ 2 , S (2c J l ) , X 2 = - f t + ^ 2 S ( 2 t o 2 ) , (9) 

which, as will be seen later, are the Lyapunov exponents of 
the two uncoupled single-degree-of-freedom systems that result 
when the coupling coefficients kn, k2\ are set equal to zero. 

From the second of Eqs. (7), it is clear that the 0-process 
is itself a diffusion on the first quadrant of the unit circle. If 
*(0) vanishes in [0, ir/2], the diffusion process is singular, 
otherwise it is nonsingular. From the last of (8), ^r2(</>) can be 
rewritten as 

C 1 •> •> 

- k [S(wi - to2) + S(«i + o2)cos 20] 

*w=< 
+ T (Xi + X2 + ft + ft)sin220, kl2k2l > 0, 

- ^2[S(co, + u2) + S(wi - co2)cos220] 

+ - (X! + X2 + ft + ft)sin22<ji, k12k2i<0. 

(10) 

Since X[ + X2 + ft + ft = [/t?1S(2wi) + A:22S(2co2)]/8 > 0, 
it is clear that ^(0) vanishes at 0 = 0O = T / 4 only when 

(i) for £12fc21 > 0, kn = fc22 = 0, S(wx - co2) = 0; 

(ii) for kl2k2\ < 0, kn = k22 = 0, S(w, + a)2) = 0. 

In the following sections, the evaluation of the largest Lya
punov exponent of the averaged system (7) will be examined 
in detail for both nonsingular and singular cases. 

3 Nonsingular Case 

Suppose that ^(0) does not vanish in 0 < 0 < ir/2. Then 
the diffusion is nonsingular, the density ix(<j>) of the invariant 
measure being governed by the Fokker-Planck equation 

i ^ [ * 2 ( < M M W ] - - 7 7 [ * ( 0 ) M W ] = O . 
2 dq> d<p 

(11) 

The general solution of Eq. (11) is 

C G 
/*(*) = * 2 (0 )£ / (0 ) * 2 (0)C/(0) 

where C, G are integration constants and 

f £/(Odf. (12) 

t/(0) = exp { * ( 0 * " 2 ( 0 J * 

sin20 exp 

[.COS20 rfr 
2a 1 - bt/a 

(13) 

the constants a, 6 being given by 

1 
a = - [2(X1 + X2 + ft+ft) + Ar-S(a.1=Fw2)]) 

o 

6 = - [2(X, + X2 + ft + ft)-Ar2S(co,±co2)]. 
o 

It can be shown (Appendix) that the boundaries 0 = 0, 0 
= ir/2 are both entrance points1 in the sense of Feller (1952), 
and hence the stationary probability flux represented by G is 
zero. Thus, there is no accumulation of probability mass at 
the boundaries, and the 0-process is ergodic throughout the 
interval 0 < 0 < T / 2 . The invariant density jt(0) is therefore 
given by 

^^kfy (14) 

Cbeing the normalizing constant. Since the constant a is always 
positive, the form of the integral in Eq. (13) depends on the 
sign of the constant b. 

For b > 0, i.e., X, + X2 + ft + ft > £2S(CJI ± co2)/2, the 
invariant density y.(4>) is of the form 

Csin20 X] - X2 , _, 6cos20 
1=- tanh —-==— 

2VA VA 

(6>0), 

(15a) 

where C is determined from the normalization condition and 
is found to be 

C = - (X!~X2)csch —pr2- t a n h ~ ' - F = ) , (b>0). 
2VA VA/ 

(156') 

The constant A is defined by A = ab. 
For b < 0, the hyperbolic term in (15) is to be replaced 

appropriately by its trigonometric counterpart, while, for b 
= 0, the right-hand side of (15) is replaced by its limit as b 
-> 0. Stated explicitly, these expressions are 

Csin20 
M</>)= ,T,2/^ e xP 

*2(0) 

C = - (Xi-X2)csch 

Xi — X2 i 6cos20 
: tan 

2 V - A - A 

= tan 
- A 

and 

, , , Csin20 
M < / , ) = ^0y e x p 

(Xi - X2)cos20 

la 

C = - (Xi — X2)csch 
( ^ ) -

(b<0), (15a) 

(6<0), (156') 

(6 = 0), (15c) 

(6 = 0). (15c') 

A typical plot of the density /^(0) for the case 6 < 0 is shown 
in Fig. 1 together with the result obtained from a digital sim
ulation of the Ito differential Eq. (7) governing <j>(t). 

Physically, it is clear that unless the coupling coefficients kxl and klt in Eq. 
(5) are both zero, it is not possible to have a solution with either a,(t) = 0 or 
a2(.t) = 0. Since 0 = 0 implies a2 = 0 and 0 = ir/2 implies a, = 0, there can 
be no accumulation of probability mass at these points. 
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M W 

- Analytical result 
-Digital simulation 

ku= 1.0 kl2=l.O 
fc,, = - 1 . 0 *22 = 1.0 
/3~-/J2 = 0.1 S(w) = 0.1 

Fig. 1 Probability density p. (</>) 

Employing Khas'minskii's (1967) formulation (see also Ar-
iaratnam and Xie, 1990), the largest Lyapunov exponent of 
system (6) is given by 

ix/2 

Q ( 0 ) , x ( 0 ) ^ . (16) 
o 

Substituting from Eqs. (8) and (15) into Eq. (16) and per
forming the indicated integration yields the following expres
sion for the Lyapunov exponent: 

1 
(X, + X2) + (X, - X2)coth (hzhiwh-iA 

\ 2 V A VA 

±\k2S~, (b>0). (17a) 

Again, when b < 0, the corresponding trigonometric form is 
substituted in the right-hand side of Eq. (17a) to give: 

X = 2J(Ai + x2) + (x i-A2)coth 
X 1 ~ X 2 . - 1 

—; tan 
2 V ^ A 

1 
±-k2S~, {b<0), (lib) 

In the exceptional case when b = 0, the limiting form of (17a) 
is 

1 
X = : (X, + X2) + ( X | - X 2 ) c o t h 4 ( ^ +

X 2 ) 

±\k2S~, (b = 0). (17c) 

Since 

A = ab = (32? [^ ' l 5 ( 2 c 0 l ) + *22S(2w2) ± 4 * 2 S ( « , ~ co2)] 

• lkiSi.2^) + k2
22S(2u2) =F 4k2S(m + co2)], 

it is easy to show that, for b > 0, 

VA = ^[*2-4fc4(S+)2]1 / 2 , 

where K = k2
nS{2o>\) + k2

22S(2u2) =F 2k2S~. Let 7 be defined 
by 

tan^ = ̂ = © 1 2 ' (b>0)-
Since 0 < sfb/a < 1, 0 < tanh7 < 1, and therefore 0 < 7 

< 00. Using an appropriate identity for hyperbolic functions, 
one obtains 

cosh.27 = 
k\ iS(2a>i) + k\2S{2w2) T 2k2S~ 

2k2S+ 

Hence, the Lyapunov exponent (17) can be written as, after 
defining A0 = 16A, 

x=i 
2 

(X, + X2) + (X, - X2)coth I —.75-1 a A 1 ' -^ 0 
± ^ 2 S " , (b>0), 

where 

a = 27 = cosh ~' 
K 

2kzS^ 
' Ao = ^ f ^ 2 - ^ 4 ( 5 + ) 2 ] . 

For the case b < 0, let tan7 = - fo/V^A = V - b/a, (b 
< 0), which implies that 0 < 7 < ir/2. But tan27 
= 2V - A/(a + b), which can be positive or negative. The 
sign of tan27, or cos27, is determined by the sign of a + b. 
Since a + b - K/16, one notes that sgn(cos27) = sgn(tan27) 
= sgn(^) and therefore cos27 = K/2k2S+. The expression 
for the largest Lyapunov exponent (176) thus becomes 

A = - j ( X 1 + X2) + (X 1 -X 2 )co th 
X l ~ A2 

( -Ao)" 

±\k2S~ (b<0), 

where a = cos"'(A:/2A:2S+). 
In summary, taking note of the fact that k2 = I ki2k2l I, the 

largest Lyapunov exponent for system (6) is 

(i) if/c2,S(2<o,) + k2
22S(2a2) > A\knk2i\S{uil ± o>2); i.e., A„ 

> 0, 

X = (X, + X2) + (X, - X2)coth A1-X2 V 

+ -knk2lS~, (b>0), (18«) 

where a = cosh"1 (K/2\kl2k2i \S+); 

(ii) if Ar2,S(2co,) + k2
22S(2u2) < 4l£12£21IS(a>i ± co2); i.e., A0 

< 0, 

X = ^j(X1 + X2) + (X,-X2)coth 
X 1 ~ X 2 

(-Ao)]/ 

1 
o 

where a = cos~\K/2\kl2k2l\S
+). 

(iii) if k2iS(2o>i) + k\2S(2w2) = 4\knk2\\S{ux ± co2); i.e., A0 

= 0, 

X = -j(Xi + \2) + (Xi-X2)coth 
4(X|-Xi) 
l*i2A:21IS

+ 

+ ~ki2k2iS~, (b = 0). (18c) 

The constants K and A0 are defined as 

K=k2
uS(2o>l) + k2

22S(2o>2) - 2k12k21S~, 

1 r,2 ,,2 , o + \ 2 . 

64 

In conditions (i), (ii), (iii), the upper (plus) sign is to be taken 
when knk2i > 0, and the lower (minus) sign when knk2i 
< 0. 

The Lyapunov exponent for a single-degree-of-freedom sys
tem, which was first obtained by Stratonovich and Romanov-
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3 .0 -

M<« 

- Analytical result ' \ 
' Digital simulation , \ 

A , ,=0 .0 * 1 2 = 1 . 0 
fc21 = -1 .0 422 = 0.0 
S ( w , - w 2 ) = 0.1 
/? , - /? , = 0.1 

" Analytical result 
" Digital simulation 

fcj, =0 .0 jfc12=1.0 
fc,, = -1 .0 A22 = 0.0 
S K - u , ) = 0.1 
/ ? , - / ? , = - 0 . 1 

Fig. 2 Probability density n (0) 

skii (1958), may be deduced from Eq. (18). Thus, setting the 
coupling coefficients Ar12) k2i to zero, it is evident that A0 

> 0, a — +oo, and Eq. (18a) then gives X = Xj if Xi > X2 

and X = X2 if X2 > Xt, confirming that the expression (18) is, 
in fact, the largest Lyapunov exponent of the system. 

The trivial solution q(t) = 0 of Eq. (1) is asymptotically 
stable w.p. 1 if X is negative and unstable w.p. 1 if X is positive. 

4 Singular Case 

It was found in Section 2 that ^(4>) vanishes at 4>o 
= 7r/4 when 

(i) kl2k2l > 0, kn = k22 = 0, S(w, - u2) = 0, 
(ii) £,2*21 < 0, kn = k22 = 0, S(w, + co2) = 0. 

In both cases, <f>0 = ir/4 is a singular point. To determine the 
nature of the singular point, the sign of the drift coefficient 
$(</>) at this point has to be checked. From Eq. (8), one obtains 
(see, e.g., Mitchell and Kozin, 1974): 

(i) if /3i > 02. then $(7r/4) > 0; the singular point <£0 

= 7r/4 is therefore a right or forward shunt; 
(ii) if /32 > 0i, then $(7r/4) < 0; the singular point 4>o 
= 7r/4 is therefore a left or backward shunt; 
(iii) if 02 = 0i = 0, then $ ( T / 4 ) = 0; the singular point 4>0 

= ir/4 is therefore a trap. 

In the following, these three cases will be discussed in some 
detail. 

(a) 0i > 02. For 0i > 02, the singular point <j>0 = 7r/4 is 
a right shunt. This means that even if an initial point </> is in 
the left-half interval (0, TT/4), it will eventually be shunted 
across to the right-half interval (7r/4, IT/2) and remain there 
forever. Hence, the probability density pi(</>) is concentrated in 
the right half of the interval 0 < </> < TT/2. The density /*(</>) 
of the invariant measure is governed by the Fokker-Planck 
Eq. (11), whose solution is now of the form 

0, 

/*(*) = 
C 

i&muw 

0 < < / > < - 7T, 
4 

1 1 
(19) 

where 

U(4>) = exp - 2 $(t)*~2(t)dt 

sin2</> exp 
4(0 , -0 2 ) 

k S(o>i±o)2) 
sec20 • (20). 

Fig. 3 Probability density p. (<£) 

The constant Cin Eq. (19) is determined by the normalization 
condition and is found to be 

_ 4 (0 , -02) 
C=(0!-02)exp 

k S(«i ± co2) 

A typical plot of the density n(cj>) is shown in Fig. 2 together 
with the result obtained from a digital simulation of the Ito 
differential Eq. (7) governing <K0-

Substituting from Eqs. (8) and (19) in Eq. (16) and per
forming the indicated integration results in, after replacing k2 

by \kl2k2l\, 

X= - 0 2 + - 1*12*21 I 5 ( W I ± W 2 ) , 0 i > 0 2 (21) 

where the upper sign is taken when *i2*2i > 0, and the lower 
sign when *i2*2i < 0. 

(b) 02 > 0i. For 02 > 0i, the singular point <t> = w/4 is 
a left shunt and the invariant probability density of the </>-
process is now concentrated in the left half of the interval 0 
< <j> < TT/2. The density ji(</>) of the invariant measure is given 
by 

/*(*) = 

—-, , 0 < d ) < - 7T, 

[o, 
1 1 

(22) 

- 7 T < 0 < - ir, 

where U(<j>) is given by Eq. (20). The constant C determined 
by the normalization condition is 

C = ( 0 2 - 0 ! ) e x p 4(02-0 i ) 

k S(a>i±o>2) 

Again, to confirm the correctness of the analysis, a typical 
plot of the density fx{4>) along with the result obtained from 
simulation of the Ito Eq. (7) governing 4>{t) is shown in Fig. 
3. 

Substituting from Eq. (8) and (22) in Eq. (16), one obtains 
the largest Lyapunov exponent as 

X = - 0 , + - 1*12*2115(wi±w2), 02>0 i (23) 

(c) 0i = 02 = 0. For 0i = 02 = 0, the singular point <f>0 

= TT/4 is a trap. This means that regardless of where the initial 
point </> is situated, it will eventually be attracted to the point 
0o = 7r/4 and remain there forever. The density n(4>) of the 
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invariant measure is the Dirac delta function concentrated at 
TT/4: 

AW>) = S | 4>~- ir 0<$<~ w. (24) 

From Eqs. (8), (16), and (24), the largest Lyapunov exponent 
is found to be: 

X=j Q{4>)bU-\-Ad4> = Q\^-K 

= - /3 + - ^12/t21IS(co,±co2), ft = ft = ft (25) 

It may be noted that the result (25) can also be obtained from 
either (24) or (23) by taking ft = ft = ft 

Again, in Eqs. (21), (23), and (25), the upper sign is to be 
taken when *i2*2i > 0 and the lower sign when *i2*2i < 0. 

5 White Noise Excitation 

Suppose that the excitation in system (5) represented by £(f) 
is taken to be a wide-band stationary stochastic process with 
a nearly constant spectral density S over a wide range of fre
quencies which includes coi and co2. Then £(t) may be approx
imated by a white noise process having the spectral density 
function S(co) = S = constant, for all w. For a white noise 
process, therefore, S+ = 2S, S~ = 0, and Eqs. (8) become 

Q (</>) = X, cos2<t> + A2sin
24> + *2(</>), 

1 S 
*(</>) = z (Xi - X2)sin20 + — [{k2

n + k2
22)sm4<$, 

2 64 

+ 16(Ari2sinV + A:2iCosV)cot20], 

E2(<« = T7 [2(^2!CosV + Ar^sinV) + (*2
2 + /c^)sin22</)], 

16 

y\4>) = ̂  [(*?i + k2
22) sin

224> + 8(*?2sin V + *2iCOS4<M], (26) 

where X! = - f t + Skfi/8, X2 = - f t + S*22/8. 
Since ^(0) does not vanish in 0 < 4> < 1/27T, the diffusion 

is nonsingular, so that the results obtained in Section 3 can be 
applied. The largest Lyapunov exponent for system (6) under 
white noise excitation is found to be: 

(i) if/:2, + k\2 > 4\kl2k2l\; i.e., A0 > 0, 

(X1 + X2) + (X 1 -X 2 ) co th ( \ r 7 £ 2 

where a = cosh~'(*2i + k22/4\knk2\l); 

(ii) if*2, + k\2 < 4lA:,2A:2il; i.e., A0 < 0, 

X = ; (Xi + X2) + (X[ - X2)coth 
Xi — X2 

^(-Ao)1' 

where a = cos~'(*n + k22/4)kl2k2i\); 

(hi) if *n + *22 = 41*12*211; i.e., A0 = 0, 

X = 2J( x i + x2) + ( x i - x2)coth 
2(X t -X 2 ) 

I*,2*2ll5 

(21a) 

(27 b) 

(27c) 

The constant A0 is defined as A0 = S2[(k2
u + k22)

2 

- 16*22*^i]/64. 
The Lyapunov exponents given by expressions (27) are seen 

to be the same as those obtained by Ariaratnam et al. (1990). 
Here they are obtained as a special case of the results for 
systems under a more general form of excitation. 

6 Generalization to Multi-Degrees-of-Freedom Sys
tems 

Consider now the «-degrees-of-freedom system 

q, + 2 2 Pnqj + ufqi + UiHt) 2 M/ = °. »=1,2, . . . ,H. (1) 
i = i y'=i 

Suppose the spectral density 5(o>) of £(t) has significant values 
only over a bandwidth Aco0 around a frequency co0 and is zero 
outside this band, and S(w) = O(e), 0 < lei « 1. Then the 
correlation time rc of the process £(r) is O(l/Aco0) while the 
relaxation time 7> of the response process q(r) is 0( l /e) . The 
correlation time rc characterizes the size of the time interval 
over which significant correlation extends between values of 
the process £(?), while the relaxation time rr measures ap
proximately the time scale over which a significant change of 
the amplitude of the response process may be observed. Hence, 
if Aco0 » e, then TC « rr. Under this condition, the stochastic 
averaging procedure used in Section 2 is justified (Straton-
ovich, 1963). 

From the results of the previous sections, the largest Lya
punov exponents for the «-degrees-of-freedom system (1) may 
be deduced: 

(28) 

(a) kijkji > 0. 

I f C0o = CO; + (jOj, 

X = - min(ft, ft) + - *y*y7S (co; +&>,•), 

where ft = ft,-. 

If <j)0 = 1 <J>; — CO,!, 

X = - 2 (ft + ft) - 1 kykjfiiu, - «,) 

+ -(ft-ft)coth 408,-/3/) 
kijkjiSiuj- oij) 

(b) kijkji < 0. 

If a>o = la)/ — coyl, 

X= - m i n ( f t , f t ) - - *<,-*>$(«,-w,), 

I f COQ = 0>i + Uj, 

(29) 

(30) 

X = - - (ft + ft) + g kijkjiS(wi + wj) 

1 

(C) W0 = 2C0;. 

--(ft-ft)coth 

1 

4(ft-ft) 
kijkjiS(oii + Wj) 

X = X,= -Pi + -kiiS(2w,). 

(31) 

(32) 

This last result can also be obtained from Eq. (28) or (31) by 
taking i = j . 

7 Application: Flexural-Torsional Stability of a Rec
tangular Beam 

As an application, the flexural-torsional stability of a simply 
supported, uniform, narrow, rectangular, elastic beam of length 
L subjected to a stochastically varying concentrated load P(t) 
acting at the center of the beam cross-section as shown in Fig. 
4 is considered. Both non-follower and follower loading cases 
are studied. 

7.1 Formulation. 

Non-Follower Force Case. For non-follower force, the lat
eral deflection u(t) and the angle of twist \p(t) of a transverse 
cross-section z = constant are governed by the equations of 
motion (see, e.g., Bolotin (1964) and Fu and Nemat-Nasser 
(1972)): 

Journal of Applied Mechanics SEPTEMBER 1992, Vol. 59 / 669 

Downloaded 03 May 2010 to 171.66.16.21. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



2 P P P 

t 

EL 
d4u d2(Mx^) 

dz" 

d2u du 
dz2 +P*-*[z-2L)+ml? + D<>~t = 0> 

dlu , dV d\b raV (38) 

where \j/m is the value of \p(z, 0 at z = JL/2 , S(Z - Z,/2) is the 
Dirac delta function centered at z = L/2, and Mx is the same 
as for non-follower force. 

Substituting the fundamental mode (35) in the equations of 
motion (38), and applying the Galerkin method results in 

ql+2fllql + o)iqi + 'iiKl2H t)q2 = 0, 

q\ + 20202 + u\q2 + co2#2i£ (O0i = 0, (39) 

Fig. 4 Loaded rectangular strip in flexural-torsionai deformation 
where 

0) , 
2 Ely I IT 

EL 
dAu d2(Mxt) d2u du 
dz* dz2 + m —2+Du ^ = 0, 

df2 dt m = 

m \L 

P(t) 

« 2 - — 2 mr H. 2 0 , 3 , 2$2 = % 
m mr 

4mrL\u>2-u>2\ 
:[(12-7r2)(4 + 7r2)]1/2' 

aV 
dz1 i + mr 

2aV 
dt2 + D+-£ = 0, (33) 

at K, 
I 2 21 / n 2 \ 1̂ 2 
I CO 1 — C02 I I 12— 7T x 

2^CJ, 

where 
4 + ir2 ^ 2 1 = 

TJTlcjf —cojl 

2w2 

4 + 7TZ 

12-7T: 

l i f t 
2 *' Mx = 
1 
• P ( £ -

0 « S - £ , 

L < z < L , 

Here, Pc r is the value of the critical follower force at which 
static buckling will occur. Choosing the constant 

2 \ 1/2 

K= 
<j}2 1 2 — IT' 

CO. 4 + 7T2 

and £7,,, G7 denote the relevant flexural and torsional rigidities 
of the cross-section, Du, D^, the viscous damping coefficients, 
m the mass per unit length, and r the polar radius of gyration 
of the cross-section. 

The conditions of simple support at the ends imply the 
boundary conditions: 

u(fl,t) = u(L,t) = u"(0,0 = u" (LJ) = 0, 

WO,/) = *(£ , / ) =0 . (34) 

Considering the fundamental mode, the above boundary 
conditions are satisfied by taking 

TTZ TtZ 

u(z,t)=KrqiU)sm—, \lt(z,t)=q2(t)sm—. (35) 

Substituting (35) in the equations of motion (33) and employing 
the Galerkin method lead to 

. , 1 ?i + 20i0i+ o>i0i--coio>2£(r)02 = O, 

q2 + 20202 + "202 - Kuiu2i (O0i = 0, 

the equations of motion are again of the form of (5), in which 
I 2 2 | 
I CO, — CO2I 

*i2 = ~ k 2\~ ~, ..1/2 
2(C0!C02) 

= kF, kn = k22 = 0. 

7.2 Lyapunov Exponent and Stochastic Stability. If the 
stochastic process £(0 is stationary, with mean zero, the results 
obtained in Sections 3 and 4 may be used to obtain the largest 
Lyapunov exponent of the system and hence the condition for 
almost-sure asymptotic stability. 

Non-Follower Force Case. For the non-follower force case, 
*n = £22 = 0, kl2 = k2l = kN = (coiU)2)

1/2, so that 

J_ 
16 

Substituting these values in Eq. (182?) leads to 

X=4](0, + 02)-(0i 

Xi = ,, A 2 = - 0 2 , &o=-T2k2
2k

2
2l[(S+)2-(S-)2]<0. 

(36) - 02)coth 

where 

4(0,-02) 
A r , 2 ^ . [ ( 5 + ) 2 - ( S - ) 2 ] 1 / 2 a + -k,2k2,S~ (40) 

« 1 
2 ELy I ir 

m 

GJ 1-K 
co2- 2 mr 

mr Pcr 

ITI , 2/3, = A \LJ m 
SmrLoi[W2 

Prr = -
4 + 7T2 

where a = cos^ l [ - (S _ / 5 ' + ) ] . 
The boundary of almost-sure stability is obtained by setting 

X = 0, which is found to be 

01+02 , 01-02 f. f4(0 , -0 2 ) 
- + -—:—— coth kl2k2lS

+ kl2k2lS* ki2k2iS" 
Here, P„ is the value of the critical non-follower force at which 
static buckling will occur. By choosing the constant K = - (u>2/ 
coi)1/2, one obtains 

01 + 20101 + a>201 + co1£12£ (002 = 0, 

02 + 20202 + o>jq2 + u2k2]H O0i=O, (37) 

where ki2 = k2x = (u\u2)
w2 = kN. Equations (37) are of the 

1 
[ 1 - ( S V S + ) ] ' cos 

By defining 

0N 
1 

[ 1 - ( S V S + ) ] 1 cos 
80/ 

S+l \kl2k2lS
+ S4 

form (5) with k\ 0. 

1 S~ „ 
+ 4 F = ° -

(=1,2, 

Follower Force Case. For follower force case, the equa
tions of motion governing the lateral deflection u(z, t) and 
the angle of twist \j/(z, t) are 

the stability boundary may be expressed in the form 

-ft' 
0,e = 02e (41) 
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Fig. 5(a) Stability boundaries for non-follower force case k12k2, > 0 
Fig. 6(a) Stability boundaries for follower force case kKk21 < 0 

= -0.3 

= -0.6 

= -0.9 

stable 

2.0 3.0 4.0 

4.0 

3.0-

2.0-

1.0-

0.0 

Fig. 5(b) Stability boundaries for non-follower force case kukn > 0 
0.0 1.0 2.0 3.0 4.0 

Fig. 6(b) Stability boundaries for follower force case knk2i < 0 

By solving Eq. (41), the stability boundary is obtained in terms 
of (3* and (32, or in terms of @\ and /32, where 

ft = kl2k2lS
+ S + + c o s 

[1-(S-/S+)]' 
»=1,2. (42) 

\-S~/S+) 
Typical plots are shown in Figs. 5(a) and {b) for S~ positive 
and negative, respectively. It can be seen that if S~ < 0, the 
effect of the stochastic disturbance can be stabilizing, while if 
S~ > 0, the stochastic excitation always destabilizes the system. 

-0„ X2 = *, A0=-f-ki2k
2
2l[(s

+)2- (S~f]<0. 

Follower Force Case. For the follower force case, ku 

= k22 = 0, kx2 = -k2{ = kP= l«f - &)2l/2(a)io)2)1/2. so that 

16 

Substituting these values in Eq. (18ft) leads to 

A=4[(/31+/S2) 

and is given by Eq. (41) in which @* and /32 are 

1 
' [l-(S-/S+)]' cos ~s+ 

<kl2k2l\S
+ S 

After solving the transcendental equation for the stability 
boundary in terms of §_*,_§£, one can obtain the stability 
boundaries in terms of /3i, (32 for different values of S~/S+, 
where 

S " + [ 1 - ( S - / S + ) ] 1/2 

\kl2k2l\S
+ S+ cos'\-S~/S+) 

/=1,2. (44) 

-CSj-jSJcoth 
4(ft-<32) 

\kl2k2ll[(S+)2-(S~)2]'/2CX 
+ -k12k2iS-

(43) 

where a = cos~(S~/S+). 
Following the procedure as for the non-follower force, the 

boundary of almost-sure stability is found by setting X = 0 

Some typical curves are shown in Figs. 6(a) and {b) for S" 
positive and negative, respectively. It may be noted that if S~ 
> 0, the effect of the stochastic disturbance can be stabilizing, 
while if S~ < 0, the stochastic excitation always destabilizes 
the system, which are opposite to those found in the case of 
non-follower force. 

In the special case when the stochastic process £(t) is sta
tionary, with mean zero, and possesses a constant spectral 
density S over a sufficiently wide band of frequencies, it can 
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Fig. 7 Stability boundaries under white noise excitation 

be approximated by a white noise process. For white noise 
excitation, the expression for the largest Lyapunov exponent 
is of the same form for both non-follower and follower forces, 
and is, from Eq. (27), given by 

X = G8i+ft)-(0i-ft)coth *(0i-&) 
I £12*21 IS 

(45) 

By making S — 0 in Eq. (45), the results for the deterministic 
case may be recovered; thus, if ft > /32, X — -f32 and if /32 

> £1, X — -/3i as expected. 
The boundary of almost-sure stability obtained by setting X 

= 0 is found to be given by Eq. (41) in terms of /3* and /32, 
where ft* = (l/p)ft, / = 1, 2,p = I kn/c2i I S/2-K. Hence, after 
solving Eq. (41) for the stability boundary in terms of /3*, f$%, 
one can determine the stability boundaries in terms of j3lt /32, 
which are shown in Fig. 7 for different values of the excitation 
parameter p. 

8 Conclusion 

A method of calculating the Lyapunov exponents of a class 
of two-degrees-of-freedom systems subjected to random par
ametric excitation has been presented. Explicit expressions for 
the largest Lyapunov exponent, valid in the first approxima
tion, have been obtained and applied to an example in the 
stochastic stability of elastic structures. The method has also 
been extended to certain multi-degrees-of-freedom linear sys
tems. 
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A P P E N D I X 

The procedure described by Karlin and Taylor (1981) is 
followed to establish the nature of the boundaries <j> = 0, 4> 
= 7r/2 of the diffusion process <f>(t) defined by the second 
equation of (7). 

The scale density U{<j>) is as given by Eq. (13) 

U{4>) = exp - 2 i HOW (0)de 

sin20 

sin2</> 

sin2<£ 

exp 

exp 

exp 

2VA 
tanh 

bcos24> 
z»o, 

Xi - X2 _ i bcoslcj) 
— ; tan , b<0, 

(X[ - X2)cos2</3 

2a 
b = 0. 
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Hence, there exist positive constants K\, K2 such that 

A'1cosec2<£ < U(q>) <K2cosec 20. 

The scale measure S[<t>u <t>2] of the </>-process is defined by 
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Hence, if 0 < <t> < TT/2, 

5(0,</>]=| U(4>)d4>i 

and 

{0 . P0 

[/(0)tf0> 
o Jo 

A'1cosec20c?0 = °°, 

4* 
i I/27T (» \/2lC 

I U(<j>)d<t>> \ Ar
1cosec20c?</> = oo. 

These boundaries are therefore natural under the Gikhman-
Skorokhod classification (Gikhman and Skorokhod, 1972). 

To further determine whether they are also entrance bound
aries as defined by Feller if is necessary to consider the speed 
measure defined by 

f*2 1 
MW>i,<A2]=] f 2 ( J dd>, 

"*i \4>)U(4>) 

and the integrals 

and 

N 

N(0)--

m 
u(6)M(o,e]de, 

U{6)M - * ) d e . 

The quantities A^O) and N(ir/2) approximately measure the 
time it takes to reach an interior point 0, 0 < 0 < ir/2, starting 
at the boundary points 0 = 0 and 0 = ir/2, respectively. If 
these times are finite, then the boundaries are classified as 
entrance boundaries. It is found that 

M[<t>i,(t>2. 
r 

= < 

1 , „,«, A i - \ 2 , .-i frcos20 
b>0, 

1 r „ A, ^i — A2 i i>cos20 
T-{eu}% M = - L

7 = l t a n " 1 ^ = ? , b<0, 
Al - A2 2 V ^ A ' - A 

V 

Hence, 

X,-X2 ' 2« 

^[ e "(*2)_ e «(*l ) ]> 0 . 

7V(0) = l/(0)M(O,0]rf0 
Jo 

< f ^-[e"w-em\dd, 
J0 r1"0" sin20 

and since 

e"U)_em u'(e)e"^ 
hm — : = lim — — 

e-o+ sm2e s_o+ 2cos2e 
<oo, 

(i.e., positively bounded), 

the integral is a positively bounded function in [0, 0], so that 
7V(0) < oo. Therefore, 0 = 0 is an entrance boundary in the 
sense of Feller. Similar arguments can be applied to N(ir/2) 
to confirm that 0 = ir/2 is an entrance boundary. 
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A Follower Load Buckling Problem for Rectangular 
Plates 

Eric Reissner1 and Frederic Y. M. Wan2 

Differential Equations and Boundary Conditions 
We consider a uniform isotropic plate with midplane co

ordinates x and y, with simply supported edges x = 0, a and 
with the edges y = ± b/2 acted upon by uniform thrusts N. 
The differential equation for this plate buckling problem is 

Z>V2V2w + MviW, = 0. (1) 

Introduction 
In what follows, we consider a rectangular elastic plate with 

two opposite edges simply supported and with the other two 
edges acted upon by a uniform distribution of equal and op
posite in-plane normal edge stress resultants. In order to de
termine the buckling values of these edge stress resultants, it 
is necessary to stipulate their direction during the process of 
buckling. One possible assumption is that they remain parallel 
to the plane of the unbuckled plate, the same as in the deter
mination of the Euler load for a cantilever beam. The solution 
for this "non-follower'' edge load plate problem has been given 
by Woinowsky-Krieger (1951). 

An alternate stipulation for the applied edge loads is that 
they are of the follower type, with their directions remaining 
tangent to the plate surface during the process of buckling. It 
is well known that there is no static buckling load for the 
corresponding follower load cantilever beam buckling prob
lem. The follower load plate buckling problem with which we 
are concerned here is mentioned in Woinowsky-Krieger (1951), 
with a statement which reads in free translation: "It would 
not be difficult to show that there are no static follower type 
buckling loads for this plate problem, similar to the corre
sponding result for the cantilever beam buckling problem. " 
The results in Woinowsky-Krieger (1951) for the non-follower 
load problem are reproduced in Timoshenko and Gere (1961) 
without mention of the possibility, or impossibility, of follower 
load instabilities. 

In this Note we show that the indicated static follower load 
problem—which may be of intrinsic rather than of practical 
interest—is in fact associated with finite buckling loads, and 
we determine numerical values and asymptotic expressions for 
these loads. 

'Department of Applied Mechanics and Engineering Sciences, University of 
California, San Diego, La Jolla, CA 92093. Fellow ASME. 

department of Applied Mathematics, University of Washington, Seattle, WA 
98195. Fellow ASME. 

Manuscript received by the ASME Applied Mechanics Division, Sept. 6, 1990; 
final revision, Mar. 18, 1991. Associate Technical Editor: J. G. Simmonds. 

The associated conditions of simple support are 

x=0, a: w = 0, D(wiXX+vw>yy) =0. 

The conditions at the loaded edges of the plate are 

D(w<yy + vwtXX)=0 

2' lD[Wj,yy + (2-p)wJIXX] + eNwJ, = 0. y= ±-

(2) 

(3) 

In these equations, D is the plate-bending stiffness factor, v 
is Poisson's ratio, and e has the value 0 or 1. When e = 1, we 
have the non-follower load case with the edge loads N re
maining parallel to the undeflected midplane of the plate. 
When e = 0, we have the follower load case, with the edge 
loads remaining tangent to the deflected midsurface of the 
plate. We do not, in this Note, concern ourselves with problems 
corresponding to other values of e. 

The Condition of Buckling 
We satisfy (1) and (2) by stipulating 

w{x,y)=sm(jx/a)f(iry/a). (4) 

With -iry/a = £ and ( ) , y = (w/a)(),i = (7i7a)()' we then 
obtain from (1), as a differential equation for/(J), 

/ " " - ( 2 - / c ) / " + / = 0 , (5) 

where k = Na2/ir2D. 
The boundary conditions at y = ± b/2 become conditions 

for? = ±(ir/2){b/a) = ±X, of the form 

/ " ( ± X ) - X / ( ± A ) = / " ' ( ± X ) - A A ± X ) = 0 

where p = 2 - v - ek. 
The solution of (5) can be written in the form 

f=c0 sinh(/-£) +c0 sinh(F£) +ce cosh(/-£) + ce cosh(r£) 

where (—) denotes the complex conjugate of ( ) and 

r2=l-\k+i 1-
1 

(6) 

(7) 

(8) 
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BRIEF NOTES 

Fig. 1 The dependence of the critical loads fc„ and kco on the aspect 
ratio b/a for v = 0.3 

. b/a = 0.5 

b/a = l 

Fig. 3 The dependence of the critical loads kce and kco on Poisson's 
ratio v for b/a = 0.5, 0.75, and 1.0 

b/a 

Fig. 2 The dependence of the critical loads kcl 

ratio b/a for v = 0 
and /(„, on the aspect 

G0(k) = yfk [(3 + x)(l - v) + ;-A:~e(l + v)k] sin(\VA:-4) 

+ V F ^ 4 [ ( l - ! ' ) 2 - ^ - e ( l - p ) A : ] sin(AV^) = 0. (12) 

Similarly, introduction of (7) into (6) gives as the condition 
for the determination of the even-mode critical values of k in 
the range 0 < k < 4 

Fe(k)=2i 
{rz (r -e)cosh(Xr) 

(13) 

y)cosh(Xr) 
(r3-pr)sinh(X/-) (7;1-p?)sinh(Xr) 

= \[k [(3 + e)(l - ^ ) + ^A:-eA:(l + «)] sinh(XV4-A:) 

- V4-A: [(1 - J-)2 - j>Ar - eAr(l - v)] sin(XV^) = 0 

and for the odd-mode critical values, 

F0(k)=-sfk [(3 + v)(l -v) + vk~ek(l + v)] sinh(XV4-A:) 

+ V4-A: [(l-^)2-yA--6A-(l-! ')] sin(XV^) = 0. (14) 

Equations (11), (13), and, in less explicit form (14), with e = 
1, have previously been derived in Woinowsky-Krieger (1951). 
The equation corresponding to (12) for e = 1 is omitted there. 

When 4 < k, which turns out to be the range of Ar-values 
of interest here, it is preferable to write 

/ = c l0 sin(,£) + c2o sin(p2£) + c lc cos(/?i£) + c2e cos(/?2?) 

where 

= 2 * - 1± :k-\ 1. 

(9) 

(10) 

Introduction of (9) into (6) and a separate consideration of 
the even and odd buckling modes give the following conditions 
for the determination of the critical values of k in the range 
4 < k. For the even modes, we have 

Ge(k)^2 
(p2i + u)cos(\pi) (pl+v)cos(Kp2) 

(Pi + PP\) sin(Xpi) (pi + ppi) sin(Xp2) 

= V ^ - 4 [(1 - vf- vk-e(l - v)k] sin(XV^) 

~sfk [{\-v)0 + v) + vk-e{\ + v)k\ sin(XVF I4) = 0. 

(11) 
The corresponding condition for the odd modes3 comes out 
to be 

The Buckling Load for the Follower Load Case 
The numerical determination of the critical values of k for 

the three conditions (11), (13), and (14) for the non-follower 
load case with e = 1 has been carried out in Woinowsky-
Krieger (1951). We limit ourselves here to the evaluation of 
the follower load case e = 0. While we do not find follower 
buckling loads in the range 0 < k < 4 as Fe(k) and F0(k) 
do not change sign in this range of k, we do find follower 
buckling loads in the range 4 < k on the basis of Eqs. (11) 
and (12). Graphs of Ge(k) and G0(k) give us estimates of the 
critical values kc. Newton's iteration is then employed to obtain 
kc accurate to four significant figures. Our numerical results 
are shown in Figs. 1 and 2 for the range 0 < b/a < 5. The 
corresponding previously known results for the non-follower 
load case e = 1 are also shown for comparison. 

As might be expected, kc decreases as b/a increases and 
appears to be asymptotic to the value 4 as b/a approaches 
infinity. As might also be expected, for a given value of b/a, 
the values of kc are larger for the follower load case than for 
the non-follower load case. The results for the two cases differ 
in the range by at most not much more than a factor of two, 
2 < b/a. 

'These odd modes are also the buckling modes for a plate with sides a and 
b/2 and three simply-supported edges. 

Asymptotic Behavior for Large and Small Aspect Ratios 
The numerical results for sufficiently large values of b/a 
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Table 1 Variation of the computed kco lkce ratio with aspect ratio and 
Poisson's ratio 

^ \ v 

0.5 

0.3 

0 

0.5 

1.614... 

1.664... 

1.685... 

0.3 

1.379... 

1.404... 

1.404... , 

0 

0.8896... 

0.9451... 

1 

indicate that kc approaches the value four from above as X 
tends to infinity. Setting in (11) and (12) 

„2 

K » 4 + (15) 

we find that these equations effectively reduce to the form sine 
= 0 with the smallest positive root c = ir, and therewith 

kco = 41 1 + -g (16) 

for sufficiently large values of b/a. 
In the range b/a « 1, it is suggested by the form of (11) 

and (12) that 

c2 

K « -2. (17) 

Instability of Generalized Equilibria of Pseudodissipa-
tive Systems 

J. A. Walker4 

In Walker (1988), criteria were obtained for stability and 
instability of the generalized equilibria of nonlinear pseudo-
dissipative systems. It.has since been found that the results on 
instability can be both improved and further simplified. By 
making more use of nonuniqueness for the pair (U,D) in the 
definition of a pseudodissipative system (Walker, 1988), we 
can produce extensions of both the basic instability result 
(Theorem 3.2) and its simplification (Corollary 3.2). These 
extensions then lead to a new and much simpler criterion for 
instability, stated here as Corollary 3.3. 

In the basic definition of a pseudodissipative system, 
Definition 2.1 of (Walker, 1988), the pair (U,D) is far from 
unique. If ft 0 —(R" are n arbitrary C'-smooth functions 
(/= 1,2,...,«), the pair (t/,£>)can be replaced by an alternative 
pair (U,D), 

U{t,q,u) = U(t,q,u) + J] uji(q), 

Dj(t,q,u) sDjit,q,u) - ^j u, 
1=1 dQi dqj 

(1) 

(2) 

However, we now find that the results for Eqs. (11) and (12) 
differ from each other. Introduction of (17) into the even-
mode formula (11), in conjunction with stipulating X « 1, 
leads again to the simple relation sine = 0, so that in this range 

_ 11 - *2i (18) 

Introduction of (17) into the odd-mode formula (12) leads 
to a somewhat less simple asymptotic result. We find, on the 
basis of the two terms with vk here having opposite signs, that 
the coefficient c2 in (17) is now determined by the relation 

( 2 - e ) sine = PC cose. (19) 

Evidently, we have kco = kce when v = 0. For v > 0, however, 
we have c = c(v) > ir and therewith the asymptotic values of 
KCO are larger than the corresponding values of kce. Specifically, 
we have kco = 1.404 kce for v ~ 0.3 and kco » 1.685 kce for 
v = 0.5. 

The above asymptotic results are (as they must be) consistent 
with our numerical results for the effect of Poisson's ratio on 
the values of kce and kco as may be seen from Table 1. 

(J = 1,2,...,/;) which also satisfies Definition 2.1. Conse
quently, the pair (L,D) can be replaced by (L,D), with L 
= T— U. This replacement has no effect on the basic stability 
result (Theorem 3.1) of (Walker, 1988) for a generalized equi
librium (qe, 0) € <R" x (R", since the function G is not changed, 
and its sole effect on the basic instability result (Theorem 3.2) 
is to permit replacement of the function R by 

£ ( ? , « ) • * ( $ , « ) + 2 2 lUui[-fj{q)+fj{qe)} 

HE7«(?r?D2" t 
/ = i ; = i 

2-^-fk(q)-~fj(q) 
dqj dqk 

(3) 

in conditions (d)-(e) of Theorem 3.2 (Walker, 1988). Since all 
ft are arbitrary, the replacement of R by R amounts to a further 
extension of Theorem 3.2. 

Identifying n-tuples with column matrices, we may choose 
f{q) = STq, where S is any real n X n matrix. It follows that 
Sin Corollary 3.2 (Walker, 1988) may be any matrix, provided 
that we redefine 
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(B~ST-C)TrT+T(B-S)T uM+TM+MTT+2liC 

(4) 

see the proof of Corollary 3.2 in (Walker, 1988). Since S need 
no longer be chosen symmetric, Corollary 3.2 has been ex
tended. 
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Table 1 Variation of the computed kco lkce ratio with aspect ratio and 
Poisson's ratio 
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indicate that kc approaches the value four from above as X 
tends to infinity. Setting in (11) and (12) 
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K » 4 + (15) 

we find that these equations effectively reduce to the form sine 
= 0 with the smallest positive root c = ir, and therewith 

kco = 41 1 + -g (16) 

for sufficiently large values of b/a. 
In the range b/a « 1, it is suggested by the form of (11) 

and (12) that 
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In Walker (1988), criteria were obtained for stability and 
instability of the generalized equilibria of nonlinear pseudo-
dissipative systems. It.has since been found that the results on 
instability can be both improved and further simplified. By 
making more use of nonuniqueness for the pair (U,D) in the 
definition of a pseudodissipative system (Walker, 1988), we 
can produce extensions of both the basic instability result 
(Theorem 3.2) and its simplification (Corollary 3.2). These 
extensions then lead to a new and much simpler criterion for 
instability, stated here as Corollary 3.3. 

In the basic definition of a pseudodissipative system, 
Definition 2.1 of (Walker, 1988), the pair (U,D) is far from 
unique. If ft 0 —(R" are n arbitrary C'-smooth functions 
(/= 1,2,...,«), the pair (t/,£>)can be replaced by an alternative 
pair (U,D), 
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However, we now find that the results for Eqs. (11) and (12) 
differ from each other. Introduction of (17) into the even-
mode formula (11), in conjunction with stipulating X « 1, 
leads again to the simple relation sine = 0, so that in this range 
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Introduction of (17) into the odd-mode formula (12) leads 
to a somewhat less simple asymptotic result. We find, on the 
basis of the two terms with vk here having opposite signs, that 
the coefficient c2 in (17) is now determined by the relation 
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Evidently, we have kco = kce when v = 0. For v > 0, however, 
we have c = c(v) > ir and therewith the asymptotic values of 
KCO are larger than the corresponding values of kce. Specifically, 
we have kco = 1.404 kce for v ~ 0.3 and kco » 1.685 kce for 
v = 0.5. 

The above asymptotic results are (as they must be) consistent 
with our numerical results for the effect of Poisson's ratio on 
the values of kce and kco as may be seen from Table 1. 

(J = 1,2,...,/;) which also satisfies Definition 2.1. Conse
quently, the pair (L,D) can be replaced by (L,D), with L 
= T— U. This replacement has no effect on the basic stability 
result (Theorem 3.1) of (Walker, 1988) for a generalized equi
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in conditions (d)-(e) of Theorem 3.2 (Walker, 1988). Since all 
ft are arbitrary, the replacement of R by R amounts to a further 
extension of Theorem 3.2. 

Identifying n-tuples with column matrices, we may choose 
f{q) = STq, where S is any real n X n matrix. It follows that 
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BRIEF NOTES 

The actual stability properties of a generalized equilibrium 
do not depend upon the manner in which Definition 2.1 is 
used, so there should be a "best choice" for S, a choice which 
does not sacrifice generality for simplicity. S is no longer re
quired to be symmetric, and experience has convinced the 
author that little or no generality is lost by choosing 

4S = 2(B + BT) + (C-Cr). (5) 

Unless C = 0, this choice differs from the choice suggested 
in Comment 3.2 of (Walker, 1988). The choice (5) leads to 

0 TC 

where 

/W,r)^ 

P(lx,v,T,S)=P^,u,T)-

vK-TK-KT' 

CT' 0 

TX-(TXy 
(TXY-TX vM+TM+MT' + 2nC 

(6) 

(V) 

2 C = C + C r < 0 , 4X=(2B - C) - (2B - C)T'= -4XT. (8) 

As C = CT > 0, P is positive definite for some /t > 0 if 
and only if P > 0 for some other (possibly larger) /z > 0. 
Hence, the foregoing extension of Corollary 3.2 (Walker, 1988) 
leads to the following simplification: 

of any (nonlinear) pseudodissipative system, so they are also 
applicable to the equilibrium (0, 0) of the linear system (9). 

If C = 0 and XT = -X *0, then (9) describes the "linear 
conservative gyroscopic system" considered in (Hagedorn, 
1975) and (Walker, 1991). In Hagedorn (1975), instability is 
concluded if M = I, C = 0, and XT X + K < 0; this result 
follows from Corollary 3.3 with v = 0, T s I. Theorem II in 
(Walker, 1991) improves upon this result, but it too follows 
from Corollary 3.3 with v = 0, V s (/ - \K) ~'. 

All instability results obtained for the (nonlinear) example 
in Walker (1988) also follow from Corollary 3.3, for the same 
choice of (fi,v,T). The advantage of not having to select the n 
x n matrix S in Collorary 3.2 becomes very significant as n 
increases. 
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Corollary 3.3: Let the generalized force be pseudodissipative 
with pseudopotential U and dissipative part D. Suppose that 
(qe, 0) € (R" x (R"is a generalized equilibrium and the follow
ing conditions hold: 

(a) There exists h > 0 such that G(t) D VIh for all / > 
to-

(b) TheLagrangianL:(R x 0 x (R"—(R* is time-invariant 
and C2-smooth, the dissipative part D: (R x Ox (R"—(R"is 
time-invariant and C'-smooth, and D(t0, q, 0) = D{t0, q

e, 0) 
for all q g 0. 

(c) det (K) ?£ 0 but K is not positive definite. 
(d) There exist real numbers \x, > 0, v > 0, and a real n 

x n matrix T such that P{fx, v, Y) is positive definite. 
Then {qe, 0) is unstable. 

Corollary 3.3 is much simpler than Corollary 3.2 of (Walker, 
1988). Not only has the n x n parameter matrix S been chosen, 
but X = 0 if 2B - C is symmetric, which implies that P is 
"matrix-diagonal." The matrices M = MT > 0, K = KT, B, 
C, and C > 0 were defined in (Walker, 1988). Notice that the 
arbitrary substitutions (l)-(2) affect B and C, which appear 
directlyjn Corollary 3.2, but they do not affect the matrices 
M, K, C, and X which appear directly in the new Corollary 
3.3. This desirable property motivated our choice (5) for S, 
and it suggests that (5) might always be the "best choice" for 
S in our extended Corollary 3.2. That is, the much simpler 
Corollary 3.3 may be fully equivalent to the extended Corollary 
3.2. There is as yet no evidence that it is not. 

If M > 0 and condition (c) is met, there exist v and T such 
that both of the diagonal submatrices in P are positive definite 
with fi = 0; hence, if either C > 0 or 2B-C is symmetric (X 
= 0), we find that condition (d) is met. Condition (d) is difficult 
to verify only if C is not positive definite and 2B-C is not 
symmetric. That is, condition (d) becomes difficult only when 
there is a chance of "gyroscopic stabilization" in the "line
arized system," 

Mx(t) + (C-2X)x(t) +Kx(t)=0. (9) 

See_Eq. (25) in (Walker, 1988), and notice that BT - B + C 
= C -IX. The instability results of (Walker, 1988) and Cor
ollary 3.3 are applicable to any generalized equilibrium (qe, 0) 

A Note on Determining the Initial Velocity of a Modal 
Field 

Q. Zhou5, T. G. Zhang6, and T. X. Yu7 

1 Introduction 

The modal solution method first developed by Martin and 
Symonds (1966), is an effective approximate method to pursue 
the dynamic plastic response of structures. The use of a fun
damental mode simplifies a complex infinite degree-of-free-
dom system to a simple one-degree-of-freedom system. In fact, 
for a rigid-plastic structure, it merely refers to the later modal 
response and neglects the early instantaneous response of the 
structures under impulsive loadings. 

Among the few methods for determining the initial velocity 
value of the modal field from the true initial velocity field of 
structures, the one widely applied is the so-called minimum A0 

technique (Martin and Symonds, 1966), which has been proved 
appropriate in solving engineering problems. According to 
Martin and Symonds (1966), A0 is defined as the difference at 
the initial instant between the true kinetic energy of structure 
and the kinetic energy of the modal field chosen. Making A0 

minimum to determine the initial velocity value of the modal 
field is called the minimum A0 technique. 

Let V0 = V(x,0) be a true initial velocity field and Vo 
= <j>(\)V% modal initial velocity field, where <A(x) is the shape 
function of the mode. Martin and Symonds (1966) defined A0 

AoW) = M 2J, 
P(V»-VW(V*-V*0<l>)dv, (1) 
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1975) and (Walker, 1991). In Hagedorn (1975), instability is 
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follows from Corollary 3.3 with v = 0, T s I. Theorem II in 
(Walker, 1991) improves upon this result, but it too follows 
from Corollary 3.3 with v = 0, V s (/ - \K) ~'. 

All instability results obtained for the (nonlinear) example 
in Walker (1988) also follow from Corollary 3.3, for the same 
choice of (fi,v,T). The advantage of not having to select the n 
x n matrix S in Collorary 3.2 becomes very significant as n 
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Corollary 3.3: Let the generalized force be pseudodissipative 
with pseudopotential U and dissipative part D. Suppose that 
(qe, 0) € (R" x (R"is a generalized equilibrium and the follow
ing conditions hold: 

(a) There exists h > 0 such that G(t) D VIh for all / > 
to-

(b) TheLagrangianL:(R x 0 x (R"—(R* is time-invariant 
and C2-smooth, the dissipative part D: (R x Ox (R"—(R"is 
time-invariant and C'-smooth, and D(t0, q, 0) = D{t0, q
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for all q g 0. 

(c) det (K) ?£ 0 but K is not positive definite. 
(d) There exist real numbers \x, > 0, v > 0, and a real n 

x n matrix T such that P{fx, v, Y) is positive definite. 
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Corollary 3.3 is much simpler than Corollary 3.2 of (Walker, 
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but X = 0 if 2B - C is symmetric, which implies that P is 
"matrix-diagonal." The matrices M = MT > 0, K = KT, B, 
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arbitrary substitutions (l)-(2) affect B and C, which appear 
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M, K, C, and X which appear directly in the new Corollary 
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and it suggests that (5) might always be the "best choice" for 
S in our extended Corollary 3.2. That is, the much simpler 
Corollary 3.3 may be fully equivalent to the extended Corollary 
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symmetric. That is, condition (d) becomes difficult only when 
there is a chance of "gyroscopic stabilization" in the "line
arized system," 
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See_Eq. (25) in (Walker, 1988), and notice that BT - B + C 
= C -IX. The instability results of (Walker, 1988) and Cor
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Field 

Q. Zhou5, T. G. Zhang6, and T. X. Yu7 

1 Introduction 

The modal solution method first developed by Martin and 
Symonds (1966), is an effective approximate method to pursue 
the dynamic plastic response of structures. The use of a fun
damental mode simplifies a complex infinite degree-of-free-
dom system to a simple one-degree-of-freedom system. In fact, 
for a rigid-plastic structure, it merely refers to the later modal 
response and neglects the early instantaneous response of the 
structures under impulsive loadings. 

Among the few methods for determining the initial velocity 
value of the modal field from the true initial velocity field of 
structures, the one widely applied is the so-called minimum A0 

technique (Martin and Symonds, 1966), which has been proved 
appropriate in solving engineering problems. According to 
Martin and Symonds (1966), A0 is defined as the difference at 
the initial instant between the true kinetic energy of structure 
and the kinetic energy of the modal field chosen. Making A0 

minimum to determine the initial velocity value of the modal 
field is called the minimum A0 technique. 

Let V0 = V(x,0) be a true initial velocity field and Vo 
= <j>(\)V% modal initial velocity field, where <A(x) is the shape 
function of the mode. Martin and Symonds (1966) defined A0 

AoW) = M 2J, 
P(V»-VW(V*-V*0<l>)dv, (1) 
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while the minimum A0 technique requires 

dAo 

ays - = o . (2) 

Accordingly, the initial velocity value of the modal field V% 
is determined by (Martin and Symonds, 1966) 

VS=-

p\i)'<j)dv 

p<l>'4>dv 

(3) 

The characteristics of this method is making the difference 
between the true initial velocity and the modal initial velocity 
minimum in the sense of least square. 

A universal procedure for determining the initial velocity of 
a modal field is proposed in this paper in the light of Lagrange's 
equation of impulsive motion. It will degenerate to the min
imum A0 technique developed by Martin and Symonds (1966) 
if the system has a continuous distribution of mass. 

2 Lagrange's Equation of Impulsive Motion and Modal 
Initial Velocity 

The fundamental mode of a structure is actually a one-
degree-of-freedom system with scleronomic nonideal con
straints. If the internal forces at the plastic deforming zones, 
i.e., the fully plastic moments at the plastic hinges, are regarded 
as active forces, it will be a one-degree-of-freedom system with 
scleronomic ideal constraints. Suppose the system can be de
scribed by the generalized coordinates q* and the true initial 
velocity q*, and it consists of n particles with the mass nij and 
the true initial velocity VJ1 (y = 1, 2, ..., n), respectively. The 
distribution of Vj"is usually different from the specified modal 
velocity field. To determine the initial velocity value of the 
modal field, suppose the system is static at the initial instant 
and it is subjected to impulse Sj = /w/Vj'in a very short duration. 
Consequently, it acquires the modal initial velocity q%. 

Because the loadings duration is very short, it may be rea
sonable to assume that the displacement of the system and the 
nonimpulsive forces, such as the active forces, i.e., fully plastic 
moments, can be neglected during the impulsive loading proc
ess. 

Lagrange's equation of impulsive motion indicates (refer to 
Rosenberg, 1977) 

< & " • 

(4) 

where T is the kinetic energy of the system and I is the gen
eralized impulse caused by the momentum Sj. A(dT/dq*) rep
resents the difference between the generalized momentum prior 
to impacting and that after impacting. Since the former is zero, 
Eq. (4) can be rewritten as 

37^ 
dqS 

= /, (5) 

where T0 is the initial kinetic energy of the modal velocity field. 
Because the system has merely one degree-of-freedom, the 

vector of the y'th particle rj is the function of generalized co
ordinates q*, and its expression does not include the time t as 
the constraints are scleronomic. That is, 

rj = r i (<7*)-

Hence, the velocity of the y'th particle is 

1 dt dq*Q ' 

where 

(6) 

(7) 

dq* 
•-4, (8) 

is exactly the shape function of the mode. Thus, the kinetic 
energy of the system is found to be 

BqV^ 
It follows that 

d7p y-i | »'j 

dqg~ £imj\aq8 
<Vl . / i£i 

dq$ 
qo-

(9) 

(10) 

Caused by momentum Sj, the generalized impulse should be 

(11) '-i*£-±'rt* dqS dq$ 
j=l " * « y = l 

By substituting (10) and (11) into (5), the modal initial ve
locity value can be solved 

v« ™ i?o " r j 

<?o = 7T~\—7T~V- (!2) 

E"=i/n/ 
dq*o 

ii 
m The foregoing expression is more universal than formula 

(3), and it possesses a clear mechanics background. 
The particle system can be transformed into a continuum 

body of volume v and mass density p, provided that m^pdv, 
q%= V%, while the sum is changed into integration. By using 
(8), expression (12) is changed into 

u •<t>dv 

p4>'<j>dv 

(13) 

which is exactly the same as expression (3) obtained by the 
minimum A0 technique. 

While using the aforementioned procedure, formula (5) may 
be convenient because it represents the conservation of angular 
momentum in some cases. In fact, when the modal velocity 
field of a structure results in a movement of one degree-of-
freedom, at least a part of the structure rotates about a fixed 
axis rotation (see the second example that follows). Formula 
(5) indicates that, with respect to the same fixed axis, the modal 
initial velocity field and the true one have equal angular mo
mentum. This explanation reflects the mechanics significance 
of the minimum A0 technique. 

3 Examples 

Example 1. As shown in Fig. 1, a quadrantal circular beam 
is subjected to a radial impact at its tip by a rigid mass G. The 
rigid-plastic complete solution, the modal solution, and the 
finite element solution were all given by Yu, Symonds, and 
Johnson (1985). The modal shape in their solution is a rotation 
about the fixed root A. The conservation of angular momen
tum with respect to A results in 

Jo>$=RGV0, (14) 

where / is the moment of inertia of the beam and rigid mass 
G with, respect to A, u*0 is the modal initial angular velocity, 
and R is the radius of the qaudrantal circle. Here, o)*0, deter
mined by (14), is exactly the same as that determined by the 
minimum A0 technique (Yu, Symonds, and Johnson, 1985). 
In this example, only the component F0A/2 (of the true ve
locity), which is perpendicular to AB, makes contribution to 
the modal solution. 

Example 2. In Fig. 2, when one column of a portal frame 
is subjected to a uniformly distributed impulsive loading, a 
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Fig. 1 

2 1 , -

(<•) (*) 
Fig. 2 

four-hinged mode (Fig. 2(b)) may be taken as a modal shape. 
With the help of conservation of angular momentum with 
respect to A, we can easily find that the modal initial velocity 
at characteristic point C (and B) is 

Vg=-
3L2F0 

4Z-2+12L, 
(15) 

This example illustrates that a one-degree-of-freedom system 
may also include other movements besides a rotation about a 
fixed axis. 

On the Bending of Rectangular Plates With Two Op
posite Edges Simply Supported 

James R. Hutchinson8 

Introduction 
It has recently been brought to my attention that several 

authors, when seeking exact solutions to plate bending prob
lems, have relied on the solution given on pages 208-210 in 
the "Theory of Plates and Shells" by Timoshenko and Woi-
nowsky-Kreiger (1959). That series solution is for the uniformly 
loaded rectangular plate with two opposite edges simply sup
ported, one edge free and the other edge clamped. Unfortu
nately, the form of solution as given is incapable of producing 
accurate results, or at least results accurate enough for com
parison purposes. The series solution in Timoshenko and Woi-
nowsky-Kreiger (1959), while being theoretically convergent is 
extremely imprecise when using a finite number of digits for 
computation. The lack of precision comes from the fact that 
the solution form involves small differences of large numbers. 
The imprecision occurs after about three terms in the series 
for the number of digits that are carried in most computers. 
While the results produced from three terms are accurate 
enough for most engineering purposes, they are not as precise 
as one would like for comparison purposes. Of course the 
accuracy of the bending moments is worse than that of the 
displacement since the moments are formed from second de
rivatives of the displacement. Wu and Altiero (1979) and Bur
gess and Mahajerin (1985) used the solution of Timoshenko 
and Woinowsky-Kreiger (1959) as an exact solution for a basis 
of comparison with their approximate techniques. Burgess and 
Mahajerin (1985) pointed out that the exact solution of Wu 
and Altiero (1979) was in error because of convergence prob
lems in calculation of the bending moments. Burgess and Ma
hajerin tried to correct the problem by calculating the bending 
moments by finite differences of the displacement function. 
The correction of Burgess and Mahajerin was still in error. 
Accurate solutions can be obtained by either changing the 
coordinate system or the solution forms as shown in the for
mulation which follows. 

4 Conclusions 
If the modal velocity field of a structure under impulsive 

loadings results in a one-degree-of-freedom movement, its in
itial velocity value can be determined from the true initial 
velocity field by the Lagrange's equation of impulsive motion. 
When the system mass distribution is continuous, this pro
cedure will degenerate to the minimum A0 technique suggested 
by Martin and Symonds (1966). In addition, from the view 
of mechanics, both procedures imply the conservation of an
gular momentum. In general, however, the initial kinetic en
ergy and the initial momentum of the modal solution are 
smaller, respectively, than those carried by the true initial con
ditions. 
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Formulation 
For the plate with the coordinate system shown in Fig. 1(a), 

Timoshenko and Woinowsky-Kreiger use the solution form 

4gg" A 

rt= 1 , 3 , 5 , . 

—<+A„ cosh a„y + B„ a„y sinh a„y 
n 

+ C„ sinh a„y + Dn any cosh a„y sin a„x (1) 

where a„ = niv/a, and other notation is as in Timoshenko and 
Woinowsky-Kreiger (1959). Numerical difficulties arise when 
using the solution form in Eq. (1) for the origin placement 
shown in Fig. 1(a). The hyperbolic terms are all small aty = 0 
and large at y = b, and the terms become increasingly large 
with increasing n. Satisfying the boundary conditions leads to 
An= -B„~ —C„~Dn for large n. For example, for « = 5, the 
differences in the magnitude of the coefficients A„, Bn, C„, 
and D„ are in the eighth significant figure. Taking as a typical 
case, y = b = a, cosha„j' and sinha„y differ in the thirteenth 
significant figure for « = 5. Thus, one needs to carry eight 
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authors, when seeking exact solutions to plate bending prob
lems, have relied on the solution given on pages 208-210 in 
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nowsky-Kreiger (1959). That series solution is for the uniformly 
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hajerin tried to correct the problem by calculating the bending 
moments by finite differences of the displacement function. 
The correction of Burgess and Mahajerin was still in error. 
Accurate solutions can be obtained by either changing the 
coordinate system or the solution forms as shown in the for
mulation which follows. 
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If the modal velocity field of a structure under impulsive 

loadings results in a one-degree-of-freedom movement, its in
itial velocity value can be determined from the true initial 
velocity field by the Lagrange's equation of impulsive motion. 
When the system mass distribution is continuous, this pro
cedure will degenerate to the minimum A0 technique suggested 
by Martin and Symonds (1966). In addition, from the view 
of mechanics, both procedures imply the conservation of an
gular momentum. In general, however, the initial kinetic en
ergy and the initial momentum of the modal solution are 
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Table 1 Deflections and bending moments for a uniformly loaded SCSF 
plate; ^ = 0.3 

k a—>) 
(a) (b) 

Fig. 1 SCSF plate with.different origins 

bla 

0 
1/3 
1/2 
2/3 

1 
3/2 
2 
3 

~ 

x = al2, y = b/2 

Wmax 
0.125000000 qb'/D 
0.093979265 qtfilD 
0.058226695 qtfi/D 
0.033543373 qb4ID 
0.011235939 qbA/D 
0.014147801qa'/D 
0.014949099 qa'/D 
0.015203454 qcfilD 
0.015219156 qcfilD 

Mx 

0.000000000 qa1 

0.007820037 qa1 

0.029263071 qa2 

0.055854598 qa2 

0.097184565 qa2 

0.123332401 qa2 

0.130529073 qa2 

0.132813522 qa2 

0.132954545i7a2 

x = a/2, y = -6/2 
My 

-0.500000000 qti^ 
-0.427943638 qb2 

-0.318974533 qb2 

-0.226910373 qb2 

-0.118406669 qb2 

-0.123734805 qa2 

-0.124665721 qa2 

-0.124975003 qa2 

-0.125000000 qa2 

significant figures to produce the third term (7? = 5) to one 
significant figure. For the fourth term (n = 7), eleven significant 
figures must be carried to produce a fourth term to 1 significant 
figure and for the fifth term (n = 9), fourteen significant figures 
are needed. 

The solution form in Eq. (1) would work well for the co
ordinate system shown in Fig. \{b), whereas for the coordinate 
system shown in Fig. 1(a), the form should be 

Table 2 Deflections and bending moments for a uniformly loaded SSSF 
plate; j . = 0.3 

4qa4 

: ir5D s — + A„ 
n 

exp( - a.ny) + B„ a„y exp( - a„y) 

+ Cnexp[~an(b~y)] 

+ Dn u„y exp[-a„(b-.)>)] (2) 

In this Brief Note the form shown in Eq. (1) will be applied 
to the coordinate system shown in Fig. 1(b). The computation 
of the hyperbolic functions can lead to very large numbers and 
hence to computer overflow problems. Computer overflow and 
underflow refer to the attempt to store numbers which are too 
large or too small in the computer (eg., for the VAX used in 
these computations, overflow in single precision occurs when 
the number is greater than approximately 1038 and underflow 
when the number is less than approximately 10~38). To obviate 
this problem, the hyperbolic functions are replaced with the 
modified hyperbolic functions defined as follows: 

Sh(cy) = 2 smh(ay)/exp(ab/2) = exp[ - a(b/2-y)] 

-exp[-a(b/2+y)] (3) 

Ch(cxy) = 2 cosh(a>>)/exp(a/J/2) = exp[ - a(b/2 -y)] 

+ exp[-a(fc/2 +y)]. (4) 

The modified hyperbolic functions (Sh and Ch) differentiate 
in the same way as the hyperbolic functions, but have maxima 
in the region of interest of the order of one. Computer overflow 
is avoided by computing the functions using the last form 
shown in Eq. (3) and (4). Computer underflow is avoided by 
computing the arguments of the exponential functions first. 
If the arguments are negative numbers large enough to cause 
underflow in the computation of the exponential functions, 
the exponential functions are returned as zero. 

The solution forms identically satisfy the governing differ
ential equations for a uniformly loaded thin plate and the 
simply-supported boundary conditions on the two opposite 
edges (x = 0 and x=d). For the SCSF plate shown in Fig. 1(b), 
the boundary conditions at y= -b/2 are w = 0 and w 7 = 0, 
and at y = b/2 are My = 0 and Vy = 0. The functions wiy, My, 
and Vy are expressed as 

SHu„y) + B„[oL„y CH«ny) 

+ Sh(a„ v)] + C„ Ch(a„y)+D„[<x„y Sh(a„y) 

+ Ch(a„.y)]|sin a„x (5) 

bla 

1/2 

2/3 

1/1.4 

1/1.3 

1/1.2 

1/1.1 

1 

1.1 

1.2 

1.3 

1.4 

1.5 

2 

3 
0 0 

x = a/2, y = b/2 

Wmax 

0.007094143 qd*ID 

0.009679443 qcfi/D 

0.010287565 qtfl/D 

0.010918482 qrf]D 

0.011564421 qcflID 

0.012214176 qcfi/D 

0.012852415 qcfilD 

0.013405953 qa*/D 

0.013834358 qa*/D 

0.014164209 qa*/D 

0.014417184 qcfilD 

0.014610598 qO*/D 

0.015069210 qO*/D 

0.015210665 qa^/D 

0.015219156 qcfilD 

Mx 

0.060158549 qa2 

0.083244614 qa2 

0.088691703 qa2 

0.094347155 qa2 

0.100140760 qa2 

0.105971327 qa2 

0.111700549 qa2 

0.116670604 qa2 

0.120517639 qa2 

0.123479891 17a2 

0.125751839 qa2 

0.127488916 qa2 

0.131607828 a a 2 

0.132878286 qa2 

0.132954545 qa2 

x = a/2, y = 0 

Mx 

0.038486816 qa2 

0.055105422 qa2 

0.059337263 qa2 

0.063916242 a a 2 

0.068856712 qa2 

0.074168268 qa2 

0.079853586 qa2 

0.085340074 qa2 

0.090130665 qa2 

0.094323408 qa2 

0.098001539 qa2 

0.101234791 qa2 

0.112480515 qa2 

0.121655007 qa2 

0.125000000 qa2 

My 

0.022324240 qa2 

0.030231695 qa2 

0.032017834 qa2 

0.03382951617a2 

0.035630251 qa2 

0.037369785 qa2 

0.038980893 qa2 

0.040260990 qa2 

0.041133265 qa2 

0.041690010 qa2 

0.042005741 qa2 

0.042139803 na2 

0.041412940 qa2 

0.039063965 qa2 

0.037500000 qa2 

Table 3 Deflections and bending moments for a uniformly loaded SFSF 
plate; c = 0.3 

bla 

0.1 

0.3 

0.5 

0.7 

0.8 

0.9 

1 

1.2 

1.5 

2 

3 
0 0 

x = o/2, y = 6/2 

Wmax 

0.014326860 qa^/D 

0.014456216 qcfi/D 

0.014644623 qcfilD 

0.014821944 qa^/D 

0.014895912 qc^/D 

0.014958835 qa^/D 

0.015011257 q^/D 

0.015089110 qcf>ID 

0.015157062 qcfilD 

0.015202171 qefi/D 

0.015218060 qa^/D 

0.015219156 qtflD 

Mx 

0.125134615 qa2 

0.126175323 17a2 

0.127812536 qa2 

0.129390877 qa2 

0.130053091 qa2 

0.13061726017a2 

0.131087659 ?a 2 

0.131786619 qa2 

0.132396867 qa2 

0.132801999 qa2 

0.132944703,7a2 

0.132954545 qa2 

x = al2, y = 0 

Mx 

0.124932693 qa2 

0.124415537 qa2 

0.123642359 qa2 

0.122994213 qa2 

0.122773859 qa2 

0.122626314 qa2 

0.122545398 qa2 

0.122545663 qa2 

0.122806077 qa2 

0.123467772 qa2 

0.124452197 qa2 

0.125000000 qa2 

My 

0.000576920 qa2 

0.005043400 qa2 

0.012147577 qa2 

0.019166737 17a2 

0.022192335 qa2 

0.024826733 qa2 

0.027078215 qa2 

0.030564510 qa2 

0.033862386 qa2 

0.036388775 qa2 

0.037499828 17a2 

0.037500000 qa2 

4qa* ^ , ( v 
M ' = ̂  S «« - - 7 + A(l-*)Ch(a„v>) 

+ Bn[a„y(l - v) Sh(a„y) + 2 Ch(any)] + C„(\ - v) Sh(a„>') 

+ A,[(l - v)any C\i(any) + 2 Sh(a„y)] sin a„x (6) 
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Applying the boundary conditions at y = ± b/2 yields a four-
by-four system of equations for the unknowns A„, B„, C„, and 
D„ for each n. Other boundary conditions are handled in a 
similar manner. When the boundary conditions are such that 
the displacement will be symmetric, the constants C„ and D„ 
will go to zero, as in the case of an SFSF plate. 
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Results 
Accurate results are given for the SSSF and the SFSF case 

as well as the SCSF case. Table 1 is the for the SCSF case and 
corresponds to Table 39 in Timoshenko and Woinowsky-
Kreiger (1959). Table 2 is for the SSSF case and corresponds 
to Table 42 in Timoshenko and Woinowsky-Kreiger (1959). 
Table 3 is the for SFSF case and is. similar to the Tables 1 and 
2 in that it considers a few key values at various b to a ratios. 
Every effort was made to ensure that the results are good to 
the number of significant figures shown in the tables. While 
this type of accuracy is not required for engineering design, it 
is extremely valuable as an accurate comparison to newly de
veloped approximate methods such as those of Wu and Altiero 
(1979) and Burgess and Mahajerin (1985). The results in Tables 
1 and 2 show that the Tables 39 and 42 in Timoshenko and 
Woinowsky-Kreiger (1959) are correct but are limited to only 
a few significant figures. It is hoped that the accurate results 
presented in this Note can be of use in future comparisons. 
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Energy Dissipated in Planar Collision 

W. J. Stronge9 

Compact solid bodies that collide at low or moderate impact 
speeds suffer negligible deformation outside a small region 
surrounding the point of contact. During collision, the reaction 
forces on colliding bodies decrease the sum of their kinetic 
energies in an initial phase of compression. Then elastic strain 
energy from the deformed region drives the bodies apart and 
restores some kinetic energy in a succeeding period of resti
tution. The energy dissipated in collision is the difference be
tween the initial and final kinetic energies. 

For partly elastic collision of "rigid" bodies, the kinetic 
energy that is dissipated D is equal to the negative of work 
done by reaction forces on the colliding bodies. This work can 
be calculated by considering changes in relative velocity across 
the small deforming region that surrounds the contact point. 
If the deforming region is infinitesimal, the reaction forces 
across this region are equal but opposite. Thus, during the 
brief period of a "rigid body" collision, changes in relative 
velocity v-,(t) across the deforming region can be found as a 
function of impulse. At any time during collision the energy 
dissipated in changing the velocity of the rigid bodies on either 
side of the deforming region depends on work W( t) done by 
the reaction forces Fj{t); 

D(t)=-W(t)=-\FiVidt' (1) 

'Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, 
U.K. Mem. ASME. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS. Manuscript received by the ASME Applied Me
chanics Division, Nov. 15, 1990; final revision, May 15, 1991. Associate Tech
nical Editor: C. Horgan. 

Journal of Applied Mechanics 

BRIEF NOTES 

where repeated subscripts imply summation over the set of 
spatial coordinates. Impact reactions are large in comparison 
with body forces so the only forces that do work during a 
"rigid body" collision are reactions at points of contact with 
neighboring bodies. 

The reaction impulse Pj(t) is the integral of force. Since 
dP, = Fjdt, work done by the reaction can be expressed as 

w(t)=\ Vidp;. (2) 

Equation (2) is readily evaluated for a period of unidirec
tional slip since changes in relative velocity are proportional 
to changes in reaction impulse if the direction of F, is constant. 
The direction of/7,, however, has a tangential component (fric
tion) that is always opposed to the tangential component of 
Vj (slip). If small initial slip is halted or reversed before collision 
terminates, both F-, and dP, change direction the instant slip 
vanishes. Consequently, for somewhat rough bodies the in
tegration of (2) must be divided into separate periods before 
and after slip vanishes. In any case, the terminal impulse at 
separation P,-(t/) can be related to energy dissipated by irre
versible internal deformation; this relationship is provided by 
Stronge's (1990) definition for the energetic coefficient of res
titution e*. 

A useful method of calculating energy dissipation in a col
lision is to use the following theorem for each separate period 
of slip and then sum the results for the period of collision. 

Work done by reaction forces on colliding bodies during 
any period of unidirectional slip At=t2-tu equals the 
scalar product of the reaction impulse AP,- and half the 
sum of the initial and final relative velocities across the 
contact point; i.e., AW= APj[vi(t2) + vi(ti)\/2 where 
AP, = i>,(f2)-P,-(fi). 

To prove this theorem, consider a triad of mutually per
pendicular unit vectors «,- aligned such that n„ is the normal 
to the common tangent plane through the point of contact CP 
and n, is the incident direction of slip. For any period of 
unidirectional slip At=t2-tu the Amonton-Coulomb law of 
friction relates the tangential and normal components of im
pulse by a limiting friction coefficient /x; 

AP,= - ^APnsgn(u) (3) 

where u = y,-n, depends on the direction of slip for the contact 
point of the other body. 

Across the contact point of colliding bodies separated by an 
infinitesimal deforming element, changes in relative velocity 
are obtained from the laws of motion, 

v,(t) = vi{tl)-mu
lAPj{t), t>h (4) 

where w,y is the effective mass for CP. Elements of m;j are 
dependent only on the mass of each colliding body and the 
distribution of mass relative to CP. If components of AP,- are 
related by the friction law (3), then during any period of uni
directional slip, Eq. (2) yields 

AW=APivi(tx)-m^APjAPj/2. (5) 

With (4), this can be expressed as 

AW=APi[vi(tx) + vi{t2)]/2. (6) 

This is a generalization of a theorem by Thomson and Tait 
(1879); their statement is valid only for collision of smooth 
(frictionless) bodies. It is noteworthy that the theorem does 
not apply to nonplanar phases of frictional collision; if changes 
in velocity are nonplanar, the direction of friction changes 
continuously during collision. (A previous statement without 
proof by Stronge (1987) did not point out that the general 
theorem is restricted to periods of unidirectional slip.) The 
separation into periods of unidirectional slip is required if 
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tangential impulse is obtained from the Amonton-Coulomb 
friction law. 

The general theorem is particularly useful for relating losses 
of energy to separate frictional and internal hysteresis sources 
of dissipation. This separation is explicit if the contact points 
have negligible tangential compliance. 
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Unilateral Contract of a Springboard and a Fulcrum 
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Fig. 1 The springboard ABC is loaded by a force P applying excentri-
cally at the front end C 

M. Kuipers10 and A. A. F. van de Ven11 

A springboard, as commonly used in diving, is considered. It 
is hinged at the rear end and rests free on a rubber fulcrum 
at the middle of the board. If an excentric load is applied to 
its front end, then due to torsion it is possible that the board 
is lifted away from the fulcrum along a certain distance. This 
problem is investigated for a static load. Although a linear 
small displacement theory is applied, the problem is nonlinear 
due to the unknown length of noncontact. 

1 Introduction 
Springboards used in diving are hinged at the rear end and 

rest free on a movable fulcrum close at midspan. Those pres
ently in use at international contests are extremely flexible, but 
also vulnerable to overloading, causing fatigue (aluminium) 
or internal buckling of fibers (wood). 

Although the demands put to the strength of a springboard 
are excessively high, specifications with respect to the allowable 
amount of torsion are neither prescribed by the F.I.N. A. (Fed
eration International de Natation Amateur), nor given by the 
producers of springboards. We feel that a simple static test, 
in which a board is loaded by an excentric force, would be of 
some value to qualify the springboard. This paper has been 
written to evaluate the results of such a test quantitatively. 
Hence, in what follows, we shall analyse the deformation of 
the board and, specifically, we shall concentrate on the dis
tribution of the reaction forces at the fulcrum in the presence 
of a possible detachment of the board from the latter. In doing 
so, we shall assume that the fulcrum behaves as a linear foun
dation of the so called Winkler type, which gives rise to a line 
load along the contact line between board and fulcrum. 
Throughout the analysis we apply linear field equations ensuing 
from a small displacement beam theory. However, in view of 
the unilateral characteristics of the contact between board and 
fulcrum, the problem is essentially a nonlinear one. 
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2 Mathematical Analysis 
We consider a springboard ABC of length 2/ and width b 

(Fig. 1). The hinge is at the rear end A and the fulcrum is 
placed in the middle B of the board. Until further notice we 
shall assume that the board has a uniform cross-section, so 
that its bending and torsional stiffnesses are constants. We 
note that usually springboards are tapered; therefore, we shall 
return to this point in the sequel. The board is loaded by a 
static force P applied at a distance d from the center of the 
front end C, as shown in Fig. 1 (0 < d < b/2). In what follows 
we shall neglect the effect of the anticlastic bending of the 
board. Although for a beam of homogeneous material this 
anticlastic effect can be quite strong, we nevertheless think 
that the neglect of this effect is justified here. The reason for 
this is in the special construction of springboards, which are 
constructed such as to keep the lateral contraction as small as 
possible. In the absence of anticlastic bending, any cross-sec
tion of the board remains straight and may show only a trans
lation and a rotation. Then, as for the contact of board and 
fulcrum, we have to distinguish between a rigid fulcrum and 
a resilient one. In the event of a rigid fulcrum, kinematical 
contact along the full width of the fulcrum without rotation 
of the cross-section at B about the longitudinal axis of the 
board exists. Then the whole part AB of the board is free from 
torsion. We note that these findings hold irrespective of the 
magnitude of P and of the torsional stiffness of the board. In 
what follows we shall return to this point. 

Next, we consider a resilient fulcrum, modeled as a linear 
elastic foundation, modulus c (defined as the magnitude of 
the reaction of the foundation measured per unit of length 
along the fulcrum if the deflection is equal to unity). Here 
we have to distinguish between full and partial contact. Des
ignating the displacement and the torsion angle of the cross-
section at B by u(l) and i/<(/)> respectively, we note that full 
contact exists if for every ij satisfying I r\ I < b/2 

cb 

dPlr, 

a,+ 12' 

"2=0, 

where a, is the torsional stiffness of the board. 
From this we readily find 

D>3d-2, 

(1) 

(2) 

where the dimensionless torsional stiffness D and the dimen-
sionless excentricity d follow from 

D 
24a, , - 2c? 

-•—rr., and d= — 
cb I b 

(3) 

so that 0 < d < 1. 

682 / Vol. 59, SEPTEMBER 1992 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.21. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

tangential impulse is obtained from the Amonton-Coulomb 
friction law. 

The general theorem is particularly useful for relating losses 
of energy to separate frictional and internal hysteresis sources 
of dissipation. This separation is explicit if the contact points 
have negligible tangential compliance. 
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in which a board is loaded by an excentric force, would be of 
some value to qualify the springboard. This paper has been 
written to evaluate the results of such a test quantitatively. 
Hence, in what follows, we shall analyse the deformation of 
the board and, specifically, we shall concentrate on the dis
tribution of the reaction forces at the fulcrum in the presence 
of a possible detachment of the board from the latter. In doing 
so, we shall assume that the fulcrum behaves as a linear foun
dation of the so called Winkler type, which gives rise to a line 
load along the contact line between board and fulcrum. 
Throughout the analysis we apply linear field equations ensuing 
from a small displacement beam theory. However, in view of 
the unilateral characteristics of the contact between board and 
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board exists. Then the whole part AB of the board is free from 
torsion. We note that these findings hold irrespective of the 
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the reaction of the foundation measured per unit of length 
along the fulcrum if the deflection is equal to unity). Here 
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where a, is the torsional stiffness of the board. 
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Fig. 2 The point i; = % separates the intervals of contact and noncon-
tact 

Fig. 3 The dimensionless noncontact length y as a function of the 
dimensionless torsional stiffness 0 for several values of the dimen
sionless excentricity d 

We see that for d < 2/3, the inequality (2) is satisfied 
automatically. However, if d > 2/3, then for too small values 
of D, it is not compiled with. In that case full contact is not 
possible, and part of the fulcrum becomes unstuck. At first 
sight this looks plausible, since a very small torsional stiffness 
will give rise to a large twist detaching one side of the board 
from the fulcrum. On the other hand, however, there is a 
seeming discrepancy with the finding that in the case of a rigid 
fulcrum, full contact develops irrespective of the value of the 
torsional stiffness. How things are becomes clear if we consider 
the case of partial contact. 

As sketched in Fig. 2, we suppose that contact between board 
and fulcrum exists only for r\ > %, where jy0 > —b/2. The 
relation u{f) + rjQ\j/{l) = 0 and the equilibrium of forces and 
moments, from the latter of which u(t) has been eliminated, 
yield the following three equations: 

U-2(l-y)V = 0, 

(U+y*)(2-y)=p, (p = 
16P 
cb2 

V D+lMd-l-y)(2-y)2 
= 0, 

(4) 

(5) 

(6) 

respectively, for the three unknown dimensionless quantities 

(7) J 7 = | « ( / ) , * = WO, > = 1 + ^ . 

Since ^ ^ 0, we can formally solve y from (6) as a function 
of D, after which (4) and (5) yield 

(2-yf (2-yY 
(8) 

3 Discussion and Numerical Results 

Before proceeding to the numerical evaluation of the results 
obtained so far, we first note the following: From (6) we can 
calculate D as a function of y yielding 

2 \ 2 -y J (2 -y)\ 

and from this we find positive values of D only if 

• 1 . 
3 -

y<~2d-

(9) 

(10) 

Since, a priori, —-b/2 < r; s b/2 or, equivalently, 0 < y < 
2, (3)2 and (10) yield 

2 -
3 ^ 1 . 

so that y € [0, 1/2] or, equivalently, 

b b 

(11) 

(12) 

Evidently^ the maximal length of noncontact is b/A, and it 
occurs if d = 1, or d = b/2, as is to be expected. Moreover, 
from (9), (10), and (11) it follows that 

0<£><3rf -2 , (13) 

and this result is in agreement with (2) pertaining to full contact. 
Figure 3 shows y as a function of D, computed from (9) for 
some values of d. 

For strength considerations it is interesting to know the 
maximal value <?max of the line load on the board at the cross-
section B. For this value we readily find, for the cases of 

(i) full contact (y = 0) 

— 2 2 — — 
0<d<- . D arbitrary, o r - < o ' < l , D>3d-2, 

<7ir 

Id 
(14) 

8 \ D + 2) ' 

(ii) partial contact (0 < y < 1/2) 

^<d<\,D<3d-2, 

cbp 
q™x~2(2-y) " ( ' 

As is to be expected, the greatest stress concentration occurs 
for d = 1, showing a concentration factor y of 

T = r 2 . 6 7 . (16) 

If one performs a static torsion test at a springboard, the 
twist angle \[/(2l) at the front end C will be measured. From 
the foregoing, it follows: 

3pd 
iA(20 = * + 

AD 
(17) 

holding for every d and D. 
Next, we turn to the seeming discrepancy mentioned in the 

preceding section following formula (2). In this respect we note 
that for very large values of c, the value of D approaches zero, 
leading to a case of partial contact with the limit y — 1/2. 
However, p becomes very small as well, yielding U — 0 and 
^ — 0. This means that in the event of a very stiff fulcrum 
the noncontact length formally may remain finite. However, 
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the play vanishes. Hence, from a physical point of view, there 
is no question of any discrepancy. 

Finally, we note that real springboards are tapered from the 
fulcrum toward the ends, whereas we have assumed that the 
board has a uniform cross-section. However, by inspection we 
find that the results obtained here still hold if we use for a, 
the harmonic mean a, of the torsional stiffness, i.e., 

1 
a,= 

1 f 
2 / 1 

dx 
a,(x) 

(18) 

Apart from that, it is easy to see that for tapered boards the 
error resulting from the neglect of the anticlastic bending in 
this paper will be smaller than for boards with a uniform cross-
section. Also, for boards consisting of a plate provided with 
separate longitudinal stiffeners, the effect of the anticlastic 
bending is small. However, in the latter case the deformation 
of the cross-section in its plane will come into play. 
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1 Introduction 
This Note presents a novel approach to the slewing of beams 

that are permitted to undergo large combined rigid-body/elas
tic motions. The problem addressed is a classical noncollocated 
beam control problem in which a slewing torque is applied at 
the beam root and sensor measurements are taken at the beam 
root and the beam tip. Cannon and Schmitz (1984) proposed 
one of the first feedback control algorithms for such a problem, 
and as well provided experimental verification. Juang, Turner, 
and Chun (1985) developed closed-form expressions for control 
gains that resulted in fuel optimal slewing. Skaar and Tucker 
(1987) developed classical open-loop and closed-loop control 
strategies making use of transfer functions. Bayo (1987) em
ployed a structural finite element technique to solve the inverse 
dynamics problem (open-loop control) for a slewing beam. In 
each of these investigations, beam motions were restricted to 
small elastic deflections. 

In contrast, this Note presents a strategy well suited for 
beams undergoing large elastic motions described by nonlinear 
partial differential equations of motion. The associated torque 
is governed by a slewing control algorithm consisting of open-
loop and closed-loop components. The open-loop component 
produces the desired overall rigid-body motion of the beam, 
while the closed-loop component suppresses the elastic vibra
tional motion relative to a shadow beam. The shadow beam 
is a fictitious beam whose motion is prescribed by the designer. 
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This concept of a shadow structure was developed by Silverberg 
and Foster (1990) for maneuvering flexible spacecraft. In the 
present work, the shadow beam is essentially a straight line 
that remains tangent to the beam at its root. The closed-loop 
control component is expressed as a function of three param
eters; the collocation gain, the angular displacement gain, and 
the angular rate gain. The angular displacement gain provides 
the beam with artificial stiffness and the angular rate gain 
provides the beam with artificial damping as described by 
Silverberg and Morton (1989) for this class of structures. The 
collocation gain provides torque smoothing as well as a means 
of controlling the degree of sensor/actuator collocation. 

The approach introduced in this Note has the potential to 
apply to a broad class of nonlinear control problems. In view 
of this, Section 2 reviews general nonlinear beam kinematics. 
The slewing control algorithm is developed in Section 3. Then 
Section 4 discusses the efficient numerical integration of the 
associated equations of motion by an enhanced Newmark 
(1959) algorithm. Finally, Section 5 presents simulation results. 

2 Beam Kinematics 
Consider a very flexible beam, subject to a slewing torque 

applied through a hinge point at the root (see Fig. 1). The 
beam undergoes arbitrarily large elastic bending, axial, and 
transverse shear deformations. All motions occur in the hor
izontal plane absent gravitational effects. No restriction is 
placed on the magnitude of displacement of points along the 
elastic axis or on cross-section rotations. Figure 1 shows the 
flexible beam in an intermediate configuration as well as the 
associated shadow beam. The angle of rotation of the cross-
section at the root is denoted 0\. This angle defines the ori
entation of the shadow beam. The inertial displacement com
ponents at the beam tip are designated by U\ and u2. 
Longitudinal and transverse displacements at the beam tip 
relative to the shadow beam are designated by u and v. The 
connecting angle 6 defines the orientation of the line joining 
the beam root and beam tip. The unstretched length of the 
beam is L, 

The tip displacements relative to the shadow beam are ex
pressed in terms of uit u2, 8\, and L as follows: 

— u=[ — U\—L(l — cos0i)]cos0! - [«2-£sin0i]sin0i (l) 

v=[-Ui-L(l- cos0i)]sin0! + [w2 - Lsinf^jjcos^!. (2) 

The time derivatives of u and v are easily expressed in terms 
of «!, u2, U\, «2, 0ii and 6i. The connecting angle is simply 

Flexible Beam 

Fig. 1 Geometry and deformation measures for the elastic beam 
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(1987) developed classical open-loop and closed-loop control 
strategies making use of transfer functions. Bayo (1987) em
ployed a structural finite element technique to solve the inverse 
dynamics problem (open-loop control) for a slewing beam. In 
each of these investigations, beam motions were restricted to 
small elastic deflections. 

In contrast, this Note presents a strategy well suited for 
beams undergoing large elastic motions described by nonlinear 
partial differential equations of motion. The associated torque 
is governed by a slewing control algorithm consisting of open-
loop and closed-loop components. The open-loop component 
produces the desired overall rigid-body motion of the beam, 
while the closed-loop component suppresses the elastic vibra
tional motion relative to a shadow beam. The shadow beam 
is a fictitious beam whose motion is prescribed by the designer. 
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This concept of a shadow structure was developed by Silverberg 
and Foster (1990) for maneuvering flexible spacecraft. In the 
present work, the shadow beam is essentially a straight line 
that remains tangent to the beam at its root. The closed-loop 
control component is expressed as a function of three param
eters; the collocation gain, the angular displacement gain, and 
the angular rate gain. The angular displacement gain provides 
the beam with artificial stiffness and the angular rate gain 
provides the beam with artificial damping as described by 
Silverberg and Morton (1989) for this class of structures. The 
collocation gain provides torque smoothing as well as a means 
of controlling the degree of sensor/actuator collocation. 

The approach introduced in this Note has the potential to 
apply to a broad class of nonlinear control problems. In view 
of this, Section 2 reviews general nonlinear beam kinematics. 
The slewing control algorithm is developed in Section 3. Then 
Section 4 discusses the efficient numerical integration of the 
associated equations of motion by an enhanced Newmark 
(1959) algorithm. Finally, Section 5 presents simulation results. 

2 Beam Kinematics 
Consider a very flexible beam, subject to a slewing torque 

applied through a hinge point at the root (see Fig. 1). The 
beam undergoes arbitrarily large elastic bending, axial, and 
transverse shear deformations. All motions occur in the hor
izontal plane absent gravitational effects. No restriction is 
placed on the magnitude of displacement of points along the 
elastic axis or on cross-section rotations. Figure 1 shows the 
flexible beam in an intermediate configuration as well as the 
associated shadow beam. The angle of rotation of the cross-
section at the root is denoted 0\. This angle defines the ori
entation of the shadow beam. The inertial displacement com
ponents at the beam tip are designated by U\ and u2. 
Longitudinal and transverse displacements at the beam tip 
relative to the shadow beam are designated by u and v. The 
connecting angle 6 defines the orientation of the line joining 
the beam root and beam tip. The unstretched length of the 
beam is L, 

The tip displacements relative to the shadow beam are ex
pressed in terms of uit u2, 8\, and L as follows: 

— u=[ — U\—L(l — cos0i)]cos0! - [«2-£sin0i]sin0i (l) 
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The time derivatives of u and v are easily expressed in terms 
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Flexible Beam 

Fig. 1 Geometry and deformation measures for the elastic beam 
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;tan~ 

l = 7r + tan" 

"2 

L + Uj 

"2 

L + Ut 

for L + « ,>0 

for L + u , < 0 . 

(3) 

(4) 

The time derivative of 6 is easily expressed in terms of ux, u2, 
iti, and ii2. 

3 Beam Control 

The proposed slewing control algorithm is an implicit func
tion of inertial measurements of displacements and velocities 
at the beam tip: ux, u2, U\, u2, and also makes explicit use 
of the root angle 0i, the connecting angle 0 and their time 
derivatives. Furthermore, two additional quantities are intro
duced to aid in the development of the slewing algorithm. The 
two quantities are a desired path angle 60(t) and a collocation 
angle d/j). The desired path angle is expressed in the poly
nomial form 

e0(t) = a0 + axt + a2t
2 + ait

3 + a4t
4 + a5t

5 t<T (5) 

where Tis the slewing time. The coefficients a0 through a5 are 
determined by appropriate initial and final states. In the nu
merical example presented here, the beam is slewed 90 deg 
counterclockwise in a rest-to-rest maneuver. The initial and 
final states are 

(6) 0O(O) = O 0O(O) = O 0O(O) = O 

0 o ( 7 ' ) = | eQ(T)=0 So(7) = 0. (7) 

For a slewing time T = 5, the coefficients for t < T are 

a0 = ai=a2 = 0, a3 = 0.12566371, 

a4=-0.03769911, a5 = 0.00301593 (8) 

and for t > T are 

ao = 2< ai=a2 = a3 = a4 = a5 = 0. (9) 

The slewing torque is expressed as 

M(t)=M0(t)+Mc(0 (10) 

where M0 represents an open-loop torque and Mc represents 
a closed-loop torque. The open-loop torque controls gross 
overall slewing motion, while the closed-loop torque controls 
elastic motions relative to the desired nominal path. The open-
loop torque M0 is simply the torque required to maneuver a 
rigid beam along the desired path. Thus, 

M0 = lJ0 (11) 

where /,„ = mL2/3 is the mass moment of inertia of the rigid 
beam about the hinge point and m is the total mass of the 
beam. The closed-loop torque is defined as 

Mc=- (ct + c£)Imtff-do) -2uJm(6f- 60) (12) 

where 6/ represents a collocation angle defined here as 

efmel+^e-ei). (13) 
The parameters au a2, and ft. are selected by the designer. 

The parameter ai controls damping of the beam motions, a2 

controls the frequency of oscillation, and /3C represents a torque 
smoothing parameter. The quantity I3C may also be interpreted 
as a collocation parameter, and enables the introduction of 
the collocation angle 6/, as shown in Eq. (13). As /3C varies 
between 0 and 1, the collocation angle varies continuously 
between B\ and 0. When /3C = 0, 6f = 6\ and the feedback 
control is collocated, i.e., the sensor {d\, dx) is collocated with 
the actuator (M{t)). If the beam were absolutely rigid, a, 
would be identical to the damping rate, and a2 would be equal 
to the closed-loop frequency. When (3C > 0, then the sensor 
and actuator are noncollocated, i.e., when /3C = 1, 0/ = 0. 

4 Dynamic Finite Element Analysis 

The slewing motions of very flexible beams under the in
fluence of control torques are governed by nonlinear partial 
differential equations (PDE's) of motion. The derivation of 
these PDE's and their efficient numerical solution by a finite 
element discretization procedure was proposed by Simo and 
Vu-Quoc (1986). The beam is effectively divided into a series 
of finite elements, joined at nodal points whose positions are 
selected by the analyst. The spatially discretized equations of 
motion for the large deformation beam theory proposed by 
Simo and Vu-Quoc (1986) are conveniently presented in a form 
commonly encountered in nonlinear structural dynamics, 

Ma + P(d) = Fc(d,v) (14) 

where d is a vector containing nodal displacements and cross-
section rotations, v is a vector containing nodal velocities and 
cross-section angular velocities, and a is a vector containing 
nodal accelerations and cross-section angular accelerations. M 
is the symmetric system mass matrix. The mass matrix is time 
invariant here because kinematic quantities are referred to an 
inertial reference frame, i.e., there are no rotating reference 
frames. P(d) is the nonlinear internal force vector and Fc(d, 
v) is the system control force vector. Details regarding the 
numerical solution of Eq. (14) in which Fc(d, v) = 0 are given 
in the paper by Simo and Vu-Quoc (1986). The computational 
procedure developed by Simo and Vu-Quoc (1986) is sum
marized briefly as follows, along with an extension that in
corporates the control force. 

Essentially, the computational task is to advance an equi
librium solution from known values of dn, vn, and an at time 
t = t„ to values d„+i, v„+1, and a„+1 at t = ?„ + 1. This can be 
accomplished by combining the Newton-Raphson method for 
solving nonlinear systems of equations with the Newmark (1959) 
method for solving second-order systems of ordinary differ
ential equations. The key steps in the solution algorithm are 
described as: 

Displacement/Velocity Predictors: 

d « , = d„ + A?v„ + — ( l - 2 / 3 ) a „ 

5(0 . 

(15) 

vA+i = v„ + A?( l -7)a„ . (16) 

The superscript'0 is an iteration counter, initially set to 0. Note 
that aĵ i i = 0. Newmark parameters are indicated by (3 and 
y. These adjustable parameters control the stability and ac
curacy of the Newmark algorithm. For this work, /3 = 1/4 
and 7 = 1/2, corresponding to the trapezoidal rule. The fol
lowing linear system of algebraic equations is then solved to 
generate the incremental acceleration Aa, 

M-yAt arOi'i,,^,) 
dv 

9F c (d^ i ,v< ' | , ) 
dd 

+ PAt2 SPffili) 
3d 

or 

Aa = F c ( d ^ 1 ) v < 0
1 ) - P ( d ^ 1 ) 

M*Aa = R ^ , 

(17) 

(18) 

where M* is the effective mass matrix, and R^+i is referred to 
as the residual. 

Displacement/Velocity /Acceleration Updates: After solv
ing for the acceleration Aa in Eq. (18), calculate 

(19) a<'+
+,l> = a<!i, + /3A/2Aa 

«('•+.» = * ( 0 

aC'+.D-aO 

•i'ii + 7A/Aa 

aj'Ji + Aa. 

(20) 

(21) 

A convergence check is performed at this stage by forming 
the ratio I IR^ ' I I /UR^I I . If this ratio is greater than a pre-
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Fig. 2 Open-loop response (<*, = 0.0, a2 = 0.0, $0 = 0.0) 

0 2 4 6 

Time 
Fig. 4 Closed-loop response sensitivity to control parameter pc (a, 
= 0.2, a2 = 0.2) 

L = 1 0 (total length) 

Fig. 3 Closed-loop response sensitivity to control parameter a-, (a2 

= 0.2, 0C = 0.3) 

specified error tolerance, Eq. (18) is solved again using the 
new updated kinematic quantities. If this ratio is less than the 
user-specified tolerance (1.0 x 10~8 in our work), convergence 
is achieved and the desired kinematic quantities at t - t„+\ 
are 

o«+i—fl«+i - vn+l *« + 1 — »n + 1 (22) 

Explicit expressions for M, P, and 3P/3d (tangent stiffness) 
are contained in the paper by Simo and Vu-Quoc (1986). The 
term 3FVdd involves derivatives of the control moment with 
respect to certain finite element nodal kinematical quantities. 
In the present control algorithm, these quantities are the cross-
section rotation and angular velocity at the hinge point and 
the inertial displacements and velocities at the beam tip. The 
partial derivatives dM/ddu dM/du{, dM/du2 are calculated and 
added properly to the M* matrix above. These quantities clearly 
depend on dd/dux, dd/du2, d6/duu and dd/du2, which are 
calculated from Eq. (3). Likewise, the tangent damping matrix 
dFVdv involves the derivatives dM/dOu dM/dult 3M/du2, 
which in turn depend on dd/dii\ and dd/dii2. 

£•=10,000 

G = 12,000 

(elastic modulus) 

(shear modulus) 

A = \ (cross-sectional area) 

7=1/10 (second moment of area) 

p = 1 (mass density). 

Figure 2 shows the response of the connecting angle 6 and 
the tip deflection v for open-loop control (a, = a2 = 0). In 
the case of open-loop control, the connecting angle 0 is identical 
to the desired path angle 6Q if the beam is rigid. Since the 
simulations performed here are representative of a very flexible 
beam, oscillations associated with the fundamental bending 
vibration mode are detected, and after the maneuver period 
(T = 5), the connecting angle oscillates about the desired value 
dQ = it/2. The tip deflection oscillates about zero with no 
damping. Note the very large transverse bending deflections 
of ±4 compared to the beam length L = 10. This and sub
sequent simulations use an integration time step At = 0.5. The 
fundamental period 7} for the bending mode calculated from 
classical linear vibration theory (pinned-free beam) is 7} 
= 2TT/(3.926602)2 (EI/pAL4y{/2 = 1.289. The simulation 
agrees well with this result. 

Figure 3 shows the tip deflection response for the case a2 

= 0.2 and |3C = 0.3. For 0 < ai < 0.3, the response is clearly 
stable, and the elastic motion of the beam is slowly damped 
in time. As the control parameter «i increases, the damping 
rate increases. For ai = 0.3, the elastic motions are suppressed 
after a few oscillations beyond the maneuver time T = 5. 
Figure 4 shows the time response of the tip deflection v(t) as 
a function of the parameter /3C, holding «i and a2 constant. 
This figure highlights the effect of the noncoUocated control 
on the response in the presence of altered stiffness character
istics. Figure 5 shows the region of stability corresponding to 
the physical parameters listed above. Instability arises as the 
collocation parameter increases beyond critical levels. Figure 
6 shows, the fuel consumption Fut defined by F„, = $" \M\dt 
for a range of values of the parameters at and /3C, holding a2 

= 0. It is significant to note that the fuel consumption is 
maximum for collocated control (/3C = 0), and decreases as 
the collocation parameter increases. 

5 Simulation Results 
The flexible beam is discretized with ten finite elements. The 

following physical parameters were selected: 

6 Conclusions 
A simple method has been proposed to control the slewing 

motion of a very flexible elastic beam. The control system 
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relies on sensing position and velocity information at the beam 
tip together with angular position and rate at the beam root. 
Simulations demonstrate that the control system performs very 
well for a large angle slewing maneuver for a beam that ex
periences large elastic bending deformations. Furthermore, it 
is shown how the fuel consumption decreases as the sensors 
become noncollocated with the actuators. 
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Absence of One NodaJ Diameter Critical Speed Modes 
in an Axisymmetric Rotating Disk 

Anthony A. Renshaw,14'16 and C. D. Mote, Jr.15' 

Introduction 
Numerically computed eigenvalues of an axisymmetric, ro

tating disk suggest that the natural vibration frequencies with 
one nodal diameter are bounded below by the rotation fre
quency of the disk. This Brief Note proves the existence of 
this bound for a large class of axisymmetric stress fields and 
boundary conditions. 

The bound bears directly on the critical speed instability of 
rotating disks. The critical speed of a rotating disk is the lowest 
rotation speed at which the propagation speed of a backward 
traveling circumferential wave equals the rotation speed. At 
critical speed the propagating wave is stationary in the non-
rotating reference frame and is excited to resonance by a sta
tionary, transverse force. Since the 1920's, both numerical and 
experimental results on centrally clamped, spinning disks have 
never found a critical speed mode with zero or one nodal 
diameters (e.g., Lamb and Southwell, 1921; Southwell, 1922; 
Tobias and Arnold, 1957; Mote, 1970; Iwan and Moeller, 
1976). The zero nodal diameter mode can be critical only if 
its eigenvalue is zero; this is not possible if the Rayleigh Quo
tient is positive definite. The one nodal diameter mode, how
ever, is critical when its eigenfrequency equals the rotation 
frequency. Although previous studies noted the absence of one 
nodal diameter critical speed modes for their specific cases, 
no general conditions under which this would occur were set 
forth. 

The proof that one nodal diameter natural frequencies are 
bounded by the rotation frequency rests on two observations. 
First, equilibrium under a centripetally induced stress field 
ensures that the completely free rotating disk has an eigen-
function whose eigenfrequency exactly equals the rotation fre
quency. This eigenfunction corresponds to rigid-body tilting 
of the disk about the nodal diameter. Second, although the 
method of multiplicative variation is typically useful only for 
non vanishing eigenf unctions (Courant and Hilbert, 1957), it 
can be used with one nodal diameter eigenfunctions provided 
that the stresses and boundary conditions are axisymmetric. 
If the vibration problem is asymmetric, then the nodal lines 
of the resulting vibration modes cannot be predicted in advance 
and the proof is not valid. 

Eigenvalue Problem and Stress Field 
Eigensolutions for the transverse displacement of a uniform, 

axisymmetric disk satisfy the self-adjoint, dimensionless equa
tion 

, 1 1 , 
V w— (rarw,r),r-~ aew,m = \ w (1) 

r r 
plus appropriate boundary conditions, where w(r,6) is the 
transverse displacement, o> and ae are the radial and hoop 
stresses, V4 is the biharmonic operator, a comma denotes 
partial differentiation, X2 is the eigenvalue, and X is the natural 
frequency. Solutions to (1) render the Rayleigh Quotient, / , 
stationary with 7=X2: 
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relies on sensing position and velocity information at the beam 
tip together with angular position and rate at the beam root. 
Simulations demonstrate that the control system performs very 
well for a large angle slewing maneuver for a beam that ex
periences large elastic bending deformations. Furthermore, it 
is shown how the fuel consumption decreases as the sensors 
become noncollocated with the actuators. 
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Absence of One NodaJ Diameter Critical Speed Modes 
in an Axisymmetric Rotating Disk 

Anthony A. Renshaw,14'16 and C. D. Mote, Jr.15' 

Introduction 
Numerically computed eigenvalues of an axisymmetric, ro

tating disk suggest that the natural vibration frequencies with 
one nodal diameter are bounded below by the rotation fre
quency of the disk. This Brief Note proves the existence of 
this bound for a large class of axisymmetric stress fields and 
boundary conditions. 

The bound bears directly on the critical speed instability of 
rotating disks. The critical speed of a rotating disk is the lowest 
rotation speed at which the propagation speed of a backward 
traveling circumferential wave equals the rotation speed. At 
critical speed the propagating wave is stationary in the non-
rotating reference frame and is excited to resonance by a sta
tionary, transverse force. Since the 1920's, both numerical and 
experimental results on centrally clamped, spinning disks have 
never found a critical speed mode with zero or one nodal 
diameters (e.g., Lamb and Southwell, 1921; Southwell, 1922; 
Tobias and Arnold, 1957; Mote, 1970; Iwan and Moeller, 
1976). The zero nodal diameter mode can be critical only if 
its eigenvalue is zero; this is not possible if the Rayleigh Quo
tient is positive definite. The one nodal diameter mode, how
ever, is critical when its eigenfrequency equals the rotation 
frequency. Although previous studies noted the absence of one 
nodal diameter critical speed modes for their specific cases, 
no general conditions under which this would occur were set 
forth. 

The proof that one nodal diameter natural frequencies are 
bounded by the rotation frequency rests on two observations. 
First, equilibrium under a centripetally induced stress field 
ensures that the completely free rotating disk has an eigen-
function whose eigenfrequency exactly equals the rotation fre
quency. This eigenfunction corresponds to rigid-body tilting 
of the disk about the nodal diameter. Second, although the 
method of multiplicative variation is typically useful only for 
non vanishing eigenf unctions (Courant and Hilbert, 1957), it 
can be used with one nodal diameter eigenfunctions provided 
that the stresses and boundary conditions are axisymmetric. 
If the vibration problem is asymmetric, then the nodal lines 
of the resulting vibration modes cannot be predicted in advance 
and the proof is not valid. 

Eigenvalue Problem and Stress Field 
Eigensolutions for the transverse displacement of a uniform, 

axisymmetric disk satisfy the self-adjoint, dimensionless equa
tion 

, 1 1 , 
V w— (rarw,r),r-~ aew,m = \ w (1) 

r r 
plus appropriate boundary conditions, where w(r,6) is the 
transverse displacement, o> and ae are the radial and hoop 
stresses, V4 is the biharmonic operator, a comma denotes 
partial differentiation, X2 is the eigenvalue, and X is the natural 
frequency. Solutions to (1) render the Rayleigh Quotient, / , 
stationary with 7=X2: 
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Aw] = JD[w] 

JN[w] = (V2w)2~(l-p)L[w,w] 

+ or(w,r)
2 + -^oe(w,e)

2 

(2) 

C/T (3a) 

JD[w] = (w^dr. (3b) 

T is the area of the plate, v is Poisson's ratio, and the bilinear 
operator L for any a and b is 

L[a, b]=a,n b,r + ^b,m) - 2 b,t 

+ \-a,r + -^a,ee)b,, (4) 

The stress field of the disk is assumed to be axisymmetric. 
Circumferential equilibrium is identically satisfied and radial 
equilibrium requires 

1 
w„ 

1 
ae = - Q2r (5) 

where Q is the rotat ion frequency. It is assumed that ar vanishes 
on any edge where the displacement, w, is not zero, and that 
o> is non-negative and vanishes only at isolated radii. No as
sumptions are made on as- This class of stress fields includes 
those induced by rotation as specific examples. 

JmW = * UWr^ + oSvAdr 

• & <t>2dr = Q2JD[<l>]. 

(9a) 

(9b) 

Equality in (9b) occurs only for -q = constant. Therefore, for 
disks with axisymmetric boundary conditions which constrain 
the rigid body mode from the space of comparison functions 
with one nodal diameter, J[<t>]>Q2. Boundary conditions sat
isfying these conditions include, but are not limited to, clamped, 
pinned, and sliding edges, as well as other axisymmetric re
straints on the interior of the disk. The bound also holds when 
the bending stiffness of the disk is zero. 
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Bounding the One Nodal Diameter Eigenvalues 

Modal decomposition of (1) or (2) uses the separable form 
w(r, 6) = R(r)cos(nd) where n is the number of nodal diameters. 
Because of radial equilibrium (5), the one nodal diameter mode 
of a disk with free boundaries has the rigid-body eigenfunction 
w = rcosfl with eigenvalue A2 = Q2. This eigenfunction describes 
tilting of the disk without flexural deformation. 

Axisymmetry gives all one nodal diameter modes at least 
the same zeros as the rigid-body eigenfunction. Hence, any 
one nodal diameter comparison function <j> can be formed by 
multiplicatively varying the rigid-body mode by some function 
V(r): 

cj>(r,d) = n(r)rcos8. (6) 

J is then bounded by splitting JN[<j>] into two parts such that 
j N = j N l + Jm. Jm includes the terms derived from the bending 
stiffness of the disk and is non-negative for all </>: 

J, , M = ( ( ( v W - d - " ) i [ * , 4>\\dr 

1 

(la) 

+ 2(l-v dr>0. (lb) 

Jm includes the stress-related terms and provides the bound 
to the eigenvalues: 

JM14>]=\ \or(<j>,r)
2 + -^oe(<l>,e)

2idT 

{ 

(8a) 

ar(r\2 + 2rr)r),r + r/2)cos20 + oeri2sm2Q \ dr. (8£>) 

Noting that 2t]t},r = {r]2),r and that by assumption either 17 = 0 
or ar = 0 at the edge of the disk, integration of (8b) by parts 
followed by use of radial equilibrium (5) gives 

Nonuniqueness in Elastoplastic Frames 

W. A. M. Alwis1 

Lack of uniqueness of the kinematic solution of elastoplastic 
flexural frames is studied by deriving a general solution for 
nonholonomic behavior. A singular hinge set is defined as a 
collection of plastic hinges that would form a mechanism if 
they were replaced by mechanical hinges. It is shown that 
whenever singular subsets can be found among active plastic 
hinges, the kinematic solution may become nonunique. The 
rate of work done by the load rates on the contributing mech
anisms must be zero if a prevailing nonuniqueness is to sustain. 

1 Introduction 

Researchers have known since the early days of the theory 
of plasticity that the strain rates in elastoplastic solids need 
not be unique (Koiter, 1960), a well-known instance being 
plastic collapse. Kinematic nonuniqueness may occur even when 
the structure is still safe from the danger of collapse. Potential 
hazards of ignoring or being unaware of nonuniqueness has 
been pointed out by Smith and Munro (1978) referring to safety 
analysis for concrete frames and by Hodge and his co-workers 
(Hodge and White, 1980; White and Hodge, 1980; Hodge, 
Bathe, and Dvorkin, 1986) referring to the use of finite element 
computer programs. 

To the author's knowledge, a general theory or a method 
of comprehensive analysis of nonuniqueness in elastoplastic 
frames or other structures is not available in the literature. 

''Department of Civil Engineering, National University of Singapore, Kent 
Ridge, 0511 Singapore. 

Contributed by the Applied Mechanics Division Oct. 3, 1990; final revision, 
Apr. 30, 1991. Associate Technical Editor: M. E. Fourney. 

688 / Vol. 59, SEPTEMBER 1992 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.21. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

Aw] = JD[w] 

JN[w] = (V2w)2~(l-p)L[w,w] 

+ or(w,r)
2 + -^oe(w,e)

2 

(2) 

C/T (3a) 

JD[w] = (w^dr. (3b) 

T is the area of the plate, v is Poisson's ratio, and the bilinear 
operator L for any a and b is 

L[a, b]=a,n b,r + ^b,m) - 2 b,t 

+ \-a,r + -^a,ee)b,, (4) 
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where Q is the rotat ion frequency. It is assumed that ar vanishes 
on any edge where the displacement, w, is not zero, and that 
o> is non-negative and vanishes only at isolated radii. No as
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those induced by rotation as specific examples. 
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Equality in (9b) occurs only for -q = constant. Therefore, for 
disks with axisymmetric boundary conditions which constrain 
the rigid body mode from the space of comparison functions 
with one nodal diameter, J[<t>]>Q2. Boundary conditions sat
isfying these conditions include, but are not limited to, clamped, 
pinned, and sliding edges, as well as other axisymmetric re
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Bounding the One Nodal Diameter Eigenvalues 

Modal decomposition of (1) or (2) uses the separable form 
w(r, 6) = R(r)cos(nd) where n is the number of nodal diameters. 
Because of radial equilibrium (5), the one nodal diameter mode 
of a disk with free boundaries has the rigid-body eigenfunction 
w = rcosfl with eigenvalue A2 = Q2. This eigenfunction describes 
tilting of the disk without flexural deformation. 

Axisymmetry gives all one nodal diameter modes at least 
the same zeros as the rigid-body eigenfunction. Hence, any 
one nodal diameter comparison function <j> can be formed by 
multiplicatively varying the rigid-body mode by some function 
V(r): 

cj>(r,d) = n(r)rcos8. (6) 

J is then bounded by splitting JN[<j>] into two parts such that 
j N = j N l + Jm. Jm includes the terms derived from the bending 
stiffness of the disk and is non-negative for all </>: 
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Noting that 2t]t},r = {r]2),r and that by assumption either 17 = 0 
or ar = 0 at the edge of the disk, integration of (8b) by parts 
followed by use of radial equilibrium (5) gives 

Nonuniqueness in Elastoplastic Frames 

W. A. M. Alwis1 

Lack of uniqueness of the kinematic solution of elastoplastic 
flexural frames is studied by deriving a general solution for 
nonholonomic behavior. A singular hinge set is defined as a 
collection of plastic hinges that would form a mechanism if 
they were replaced by mechanical hinges. It is shown that 
whenever singular subsets can be found among active plastic 
hinges, the kinematic solution may become nonunique. The 
rate of work done by the load rates on the contributing mech
anisms must be zero if a prevailing nonuniqueness is to sustain. 

1 Introduction 

Researchers have known since the early days of the theory 
of plasticity that the strain rates in elastoplastic solids need 
not be unique (Koiter, 1960), a well-known instance being 
plastic collapse. Kinematic nonuniqueness may occur even when 
the structure is still safe from the danger of collapse. Potential 
hazards of ignoring or being unaware of nonuniqueness has 
been pointed out by Smith and Munro (1978) referring to safety 
analysis for concrete frames and by Hodge and his co-workers 
(Hodge and White, 1980; White and Hodge, 1980; Hodge, 
Bathe, and Dvorkin, 1986) referring to the use of finite element 
computer programs. 

To the author's knowledge, a general theory or a method 
of comprehensive analysis of nonuniqueness in elastoplastic 
frames or other structures is not available in the literature. 
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Smith and Munro (1978) have tackled the case of nonholo-
nomic frame analysis; Hodge et al. (1986) have studied a truss 
example that exhibits nonuniqueness; and Tin-Loi and Wong 
(1989) have developed a computer method of elastoplastic anal
ysis of frames which can detect an encounter with a nonunique 
solution without determining the complete solution. In this 
paper, a general theoretical basis that describes nonuniqueness 
in nonholonomic elastoplastic frames is derived using a matrix 
formulation. 

2 Governing Equations 
The following simplifying assumptions are made regarding 

the frame that is being considered. Equilibrium equations are 
not affected by geometrical changes (first-order theory); bend
ing moment is the only active internal force that produces 
deformation and yielding; and moment-curvature relationship 
is linearly elastic/perfectly plastic. The frame is discretized into 
straight uniform members joined at nodes where equivalent 
joint loads are applied. Under such conditions, plastic hinges 
would form only at member extremities. 

Adopting the matrix approach pioneered by Maier (1970), 
the governing equation can be expressed as follows by stating 
that the total stress is the sum of elastic and residual stresses. 

Q = YF + Zp (1) 

where Q is the /x x 1 bending moment vector, F is the v x 1 
load vector, and p is the ^ X 1 plastic hinge rotation vector; 
Y and Z are influence coefficient matrices of elastic moment-
load and residual moment-hinge rotation; ix = number of 
unknown bending moments at member extremities and v = 
number of degrees-of-freedom. Z is symmetric and negative 
semi-definite; the number of linearly independent rows (or 
columns) in Z is p, where p is the degree of redundancy in the 
frame. 

The development of hinge rotations through plastic defor
mation is formalized by describing the yield constraints which 
specify that 

K < Q < K + (2) 

where K ~ and K + are the vectors of plastic moments in negative 
and positive bending, respectively. The associated flow rule 
stipulates thatpj>0 only if Q: = Kf and Q; = 0; and similarly, 
Pi < 0 only if Q, = Kf and Q, = 0; whereas p, can assume 
zero under all circumstances. Here (') denotes the rate of 
change with respect to an arbitrary time scale in this quasi-
static analysis. 

Accordingly, the behavior of the frame is governed in phases 
by sets of linear equations. The initial phase is up to the point 
of first yield and the following phases span between plastic 
events (i.e., formation of plastic hinges or plastic unloading 
of hinges to the elastic range). 

3 Kinematic Solution 

Consider the incremental form of Eq. (1): 

Q = YF + Zp. (3) 

According to the uniqueness theorem of stress rates (Melan, 
1938), for a given F the resulting Q is unique. It follows that 
the residual moment vector Zp is also unique. The presentation 
here focuses on p which may have multiple solutions. 

As only p columns of Z are linearly independent, the relation 
that expresses a linear dependency among columns of Z can 
be stated in the form 

Zc^ = o (4) 

where o denotes a null vector. It can be readily identified that 

Journal of Applied Mechanics 

c* is the vector of relative hinge rotation rates of a mechanism 
of instability. The set of mechanical hinges that has to be 
introduced to generate the mechanism c, is denoted by sk and 
referred to as a singular hinge set in this paper. There will be 
(LI - p) independent mechanisms in the frame. In view of (4), 
the general solution for p can be expressed in the form 

p = p* + Ca (5) 

where p = p* is a solution that satisfies (3) such that Q, = 
0 at the plastic hinges; C is the matrix of mechanisms formed 
by collecting a" complete set of linearly independent column 
vectors ck; and a = (a^) is a vector of multipliers which scale 
the mechanisms. The flow rule introduces bounds on these 
multipliers. 

Let the set of active plastic hinges in the frame at a certain 
point in time be S. If sk C_ S, then ck would be admitted to 
the solution by virtue of having a nonzero ak, as the flow rule 
does not restrict the magnitude of total rotation at a hinge. 
The mechanisms that cannot be admitted have their multipliers 
forced to zero by the flow rule. 

If any of the bounds of ak is infinite in magnitude, then the 
contribution of c^ can be arbitrarily scaled resulting in un-
contained plastic deformation. This is the well-known case of 
plastic collapse, the collapse mechanism being defined by c* 
together with the sign of that infinite bound. Over-complete 
collapse results if there are more than one contributing mech
anism with uncontained multipliers. 

The last term of (5) provides a continuous range of options 
for competing kinematic solutions within the limits allowed 
by the flow rule. However, once the frame assumes one of the 
possible deformed shapes, "bifurcation" to another competing 
deformed shape under constant load is not permitted, since 
the flow rule does not allow a reduction in the magnitude of 
rotation once a plastic hinge has rotated. Hence, the free move
ment of "limited mechanisms" (Maier et al., 1979) that occur 
in holonomic structures is not permitted in this nonholonomic 
case. Plastic collapse is an exception where it is possible to 
assume other deformation options under constant load with 
monotonically increasing magnitudes of hinge rotations. 

The solution would become unique again if some plastic 
hinges get unloaded such that no singular subset remains. By 
applying the principle of virtual work to the compatible system 
(iik, cA) and the (F, Q) system in equilibrium, one obtains 

F'ii, = Q 'c , (6) 

where uk is the vector of velocities of the mechanism ck and 
( )' denotes matrix transpose. Whenever S j^CS the term on 
the right-hand side of (6) becomes zero because the bending 
moments at active hinges remain constant. Thus, if ck is to 
remain as a contributor to the solution it is necessary that the 
load rate F satisfies 

F V = 0. (7) 

In geometric terms, this result states that in the Cartesian space 
of load/displacement the difference between any two com-

M M 

; ti —~<5 

V&7, V77?. 

Fig. 1 Example frame 
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Fig. 2 Load-horizontal displacement curve 

peting solutions is normal to the planes of equilibrium equa
tions defined by mechanisms as given by (6). 

4 Illustrative Example 
Consider the frame shown in Fig. 1. Each of the three mem

bers are of unit length, flexural rigidity, and plastic moment. 
The singular hinge sets are st = {1, 2) , s2 = (3, 4) , and s3 

= {1,4) , arising from the mechanisms given by c\ = (1, 1, 
0, 0), cz = (0, 0, 1, 1) and cj = (1, 0, 0, 1), respectively. 
(Sign convention adopted is that counterclockwise moments 
at member ends are positive.) Let the frame be loaded as shown 
by two equal and opposite moments of magnitude M. The 
horizontal displacement <5 of the beam is observed under 
monotonically increasing load. The solution for the initial elas
tic phase is given by Q = M ( - 0 . 6 , - 0 . 4 , 0.4, 0.6)'; p = o; 
and 6 = 0 . Note that the problem, and hence the elastic 
solution, is symmetric. 

At M = 5/3, the elastic phase terminates as plastic hinges 
form at locations 1 and 4. The solution of the second phase 
can be expressed as Q = M(fl, - 1 , 1 , 0)'; p = M ( - 0 . 5 , 0, 
0, 0.5)' + ac 3 ; - 0 . 5 M < a < 0 . 5 M ; and 5 = a. This is a 
nonunique solution. As shown in Fig. 2, the M ~ S curve has 
multiple options at each instant as the load increases. At the 
beginning of this phase the frame can choose to arrive at any 
point within PQR, but after having chosen the path PP', the 
scope narrows to P' Q' R'. Note that the deformation behavior 
is not symmetric in general. The second phase terminates at 
M = 2 as plastic hinges form at locations 2 and 3. A further 
analysis of will show that plastic collapse occurs then. 

Some Remarks on the Solutions of a Concentrated 
Torque and Double Forces on an Elastic Half-Space 

T. Chen18 

1 Introduction 
Exact solutions for a concentrated force in an infinite or 

half-space linearly elastic medium are very useful in various 
applications, for example in boundary integral method or in 
fracture mechanics. In particular, it is advantageous to have 
analytical expressions for the stress and displacement fields. 
Such point force fundamental fields can be superposed to 
obtain solutions of other boundary value problems. 

Recently, Chowdhury (1983) studied the boundary value 
problem of a homogeneous isotropic elastic half-space sub
jected to a concentrated torque normal to its surface by sim
ilarity transformations. Chow and Yang (1990) employed 
Hankel transforms to the same problem but in an orthotropic 
medium. In this study, we are concerned with the isotropic 
medium. It is shown that the solution of the above problem 
is equivalent to superposition of solutions of the Cerruti prob
lem (1882). The approach followed is to use a well-known 
limiting process which leads to a significant simplification in 
the formulation. The process is extended to a similar problem 
under two pairs of double forces without moment. Such load
ing may be referred as a singularity of "center of compression 
or dilatation" (Love, 1944). These two kinds of loadings con
sidered relate to the stresses a ,̂z and arz (see Fig. 1) acting on 
a single point, respectively. Other types of singularities can be 
synthesized as well. 

2 Solutions of Cerruti's Problems 
Consider a homogeneous isotropic elastic half-space and 

define a Cartesian coordinate system {O; xit X2, x3} with the 
plane X\ = 0 coinciding with the surface of the half-space (Fig. 
1). Exact solutions of the field variables in the half-space due 
to a tangential force P acting at the origin of the coordinate 
system in the direction of xq, q^l, were originally due to 
Cerruti (1882). A lucid exposition is given in the treatise by 
Westergaard (1952). The corresponding stress and displace
ment components for a point force acting in the direction of 
x3 (Fig. 1) are recorded in the following: 

ffi = 
3Px2iX3 
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Fig. 2 Load-horizontal displacement curve 
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Pe can be regarded as a concentrated torque applied normal 
to its surface at origin. Therefore, we can write the stresses 
and displacements in the form: 

Oij = lim 3(jjj (Xt, x2 - - e, x3 j - 3a, ij\X\, x2 + ~e,x3 

e/4 e/4 

Fig. 2 A schematic representation of a concentration torque applied 
at origin 
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where the superscript k in kaiJt
 kU; assume the solutions of 

Cerutti's problem with point force acting in the xk direction. 
When e is very small, the corresponding stress and displacement 
components can be expanded in a series with respect to (xlt 

x2, x3) as 

(1) 

When Poisson's ratio v is 1/2, the above solutions due to a 
point force acting in the xq direction, <?€ (2,3 J, can be expressed 
in a coincise form: 

kaij[x,,X2±-e,x3 
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(2) 

where /x is the shear modulus of the solid and R is given as anc* E<3S- W and (5) reduce to 

\l x ] + x\ + x\. 

3 A Concentrated Torque Acting at Origin 
The boundary conditions of a concentrated torque applied 

at origin are equivalent to 

ff" = 2 6 

"<-=2e 

dx3 dx2 

dx3 dx2 

(6) 

(7) 

(8) 

limc^ = 0, r*0, lim lira^r2 dr + 7*=0, 
z -0 Z-OOQ 

(3) 

With the concentrated torque T being denoted by Pe, one 
can derive the solutions for the stresses as: 

37X2*3 3TX2X3 
a l l = 0•'<T22 = ! ^ r • a 3 3 = ~ ~ 2 ^ ^ , 

where T is the applied torque. It is illustrated in Fig. 2 that 
such a concentration torque can be represented by two pairs 
of equal and opposite forces applied in the neighborhood of 
the origin. As the distance e diminishes indefinitely, the product 

<7]2 = 
3 Tx\X3 

4irR5' U}3~~ 4TR5 ' °23~ 4TTR5 ( 7 , 3 = -

and for the displacements as 

37*1*2 1T(x\-xl) 
, (9) 
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U\ = 0, «2 = 
Tx3 Tx2 

& " 3 = : (10) 

These can be expressed in a cylindrical coordinate system 
(with z-axis in the direction of Xi) and the nonvanishing quan
tities are: 

3T rz 3T rl T 
°<Az- 4ir R 5 ' "r<t>- (11) 

4ir R> v 4*1* R3 

Equation (11) recovers the results by Chowdhury (1983) and 
by Chow and Yang (1990). As pointed out by the latter, there 
is a misprint of tt in the stress components of Chowdhury 
(1983). 

4 Double Forces Without Moment Acting at Origin 
In this section, we consider two pairs of forces acting at the 

origin which do not induce a moment. Let a force e ^ ' P b e 
applied at the point (0, - e / 2 , 0) in the direction of x2 and let 
an equal and opposite force be applied at (0, e/2, 0); also, let 
e —0 at constant P. The same pair of forces is applied at the 
corresponding points in the neighborhood of the origin but in 
the direction of x3 (as shown in Fig. 3). After superposition, 
the stresses and displacements are 

ffy- = lim| -3<Xy(*i, x2,
 xi-2e) +3a(/(*i> *2, x3 + - e 

'<>ii\Xu X2-- e, Xi) + 2au(xu X2 + - e, X3 

«, = limj -iui[xi, x2, x3-^- e ) +\[xu x2, x3 + - e 

1 2Ut[xi, x2-^ e, x3\ +2u,\xu x2 + - e, x3 

(12) 

(13) 

d(2au) | dCay) 
dx2 dx3 

, Ui = e 
dx2 dx3 

(14) 

Explicit forms of the above solutions are quite complicated. 
Simplified solutions are obtained for the case when Poisson's 
ratio is equal to 1/2. The nonvanishing stresses and displace
ments are: 

Pr2(l5r2-12R2) 

2TR7 

Pz2(15r2-6R2) 
2irR7 

Pr(2R2-3r2) 
ur=- 4irix,R5 w , = -

Prz(l5r2-9R2) 
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(15) 
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Configuration of a Bent Tape of Curved Cross-Section 

K. Schulgasser 

Introduction 
We consider an originally straight tape of curved cross-

section, as is found for instance in measuring tapes or Venetian 
blind slats. The radius of curvature of the cross-section is 
denoted by R. When a bending moment, M, is applied at the 
ends of such a strip, it is found that at some critical moment, 
the cross-section of a portion of the strip will flatten and this 
portion (AB in Fig. 1) will go over into a circular arc while 
the remainder of the strip remains straight. The problem is to 
determine the radius, r, of the section AB. Although this prob
lem was proposed nearly 70 years ago (see Calladine, 1988), 
it was not until many years later that a solution was given by 
Rimrott (1970). He found, as is observed experimentally, that 

r = R. (1) 
This solution subsumes that the elastic properties of the strip 
are the same in the longitudinal and perpendicular directions. 
It is our purpose to generalize the solution to the case when 
the strip is anisotropic. If the Young's modulus in the longi
tudinal direction is EL and in the cross-direction is Ec, then 
we will show that the radius r is given by 

\ 1/2 

fc)
 R- (2> 

We follow very closely the development in Calladine (1988) 
and use his notation, only distinguishing between elastic prop
erties in the two directions. 

The limiting process can be applied as e—0 and the results are Analysis 

Consider Fig. 1. We identify three zones: (a) the curved 
region AB, (b) the nearly straight regions with the original 
undeformed cross-section, and (c) a transition region lying 
between (a) and (b). We examine the energy stored in the curved 
region (a) with its flattened cross-section; its radius r is the 
unknown of the problem. Let b be the transverse width of the 
flattened tape, which is taken to be somewhat smaller than R. 
Then the surface area of the tape in the region AB is b\j/r where 
the angle \p is defined in the figure. We will calculate the strain 
energy in this region of the tape. First we note that the principle 
curvatures in the straight regions (b) and in the curved region 
(a) are given by 

1 

(3«,6) 

Here, x and,y refer to the longitudinal and transverse directions 
in the tape surface, respectively. The changes in curvature when 
the tape deforms from straight to curved is thus 

{*K„Uy)=(-\,^. (4) 

The strain energy of bending per unit area, U, is given by 

Straight region: (KX, Ky)= ( 0, — 

Curved region: (KX, K„) = j - , 0 
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Fig. 1 Configuration of a bent curved tape showing (inset) the cross-
section of the tape when straight 

U = -[DU{AK> )2 + D22 j AKy)
2 + 2Z)12(AKX)(A/C7)] (5) 

where Du is the flexural rigidity of the strip in the longitudinal 
direction, D22 is the flexural rigidity in the transverse direction, 
and D12 is the cross-term. 

Then using (4) we have 

'' 2 
U= 7D"+¥D^D* (6) 

Multiplying by the total area of region (a); i.e., b^r, we obtain 
a simple expression for the total strain energy, UT, in this 
region: 

UT= 
b^ 1 r 2 

-Dn+-2D12--Dl2 
(7) 

The key observation of Rimrott was that we may ignore the 
transition region in seeking a solution to the present problem. 
This is so since the transition region is a more or less constant 
feature of the problem in the sense that it is independent of 
r. Additionally, the length of the transition region is observed 
to be approximately equal to the width of the tape, and this 
is small compared to the length of the region (a) which is \j/r. 
Hence, we expect the amount of elastic energy stored in this 
region to be small compared to that stored in region (a). We 
may also neglect the elastic energy stored in the nearly straight 
regions. Then the total energy in the system, which varies with 
r, is given in Eq. (7), and this expression must be a minimum 
with respect to r for the equilibrium configuration. Putting 

^ = 0 , (8) 
dr 

we obtain 

(9) 

which is Eq. (2) when we recognize that the ratio of the flexural 
rigidities is simply the ratio of the Young's moduli. 

An Experiment 
We now describe an interesting and extremely simple ex

periment to which Eq. (2) can be applied. Machine-made paper 
is an anisotropic (orthotropic) elastic material. Typically, for 
instance, photocopy paper has an elastic modulus in one (the 
"machine") direction about two times that in the other 
("cross") direction. We take two sheets of such paper, and 
lay one over the other with one sheet turned 90 degrees with 
respect to the second. We then roll the two sheets together 
into a tube of diameter approximately 30 mm, and place a 
band around the tube so that it will not open. Now place the 
rolled tube into an oven at about 125 °C for approximately ten 

minutes. Remove the tube from the oven and permit it to cool. 
When the band is removed the tube will very nearly maintain 
its restrained diameter due to viscoelastic relaxation of the 
natural polymers at the elevated temperature. Now cut a strip 
of width about 10 mm from each of the sheets in the rolled 
tube along the longitudinal direction of the tube. Perform the 
experiment indicated in Fig. 1 on each of the strips. If we 
denote by EMD the Young's modulus of the sheet of paper in 
the machine direction and by ECD the Young's modulus of the 
sheet of paper in the cross-direction, then application of equa
tion (2) in the instances of each of the two strips gives 

rMD EMD 

rCD ECD 

(10) 

where rMD and rCD are the radii which will be formed, respec
tively, for the strip cut in the machine direction and the cross-
direction of the paper. If for each of the two strips we maintain 
the straight sections of the strips parallel we readily perceive 
the 2:1 ratio. 
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The Dynamics of a Nonharmonically Excited System 
Having Rigid Amplitude Constraints 

Pi-Cheng Tung20 

We consider the dynamic response of a single-degree-of-free-
dom system having two-sided amplitude constraints. The model 
consists of a piecewise-linear oscillator subjected to nonhar-
monic excitation. A simple impact rule employing a coefficient 
of restitution is used to characterize the almost instantaneous 
behavior of impact at the constraints. In this paper periodic 
and chaotic motions are found. The amplitude and stability 
of the periodic responses are determined and bifurcation anal
ysis for these motions is carried out. Chaotic motions are found 
to exist over ranges of forcing periods. 

1 Introduction 

Motions of systems with two-sided constraints have been 
studied in the context of the impact damper by several authors 
(see, for example, Masri, 1972; Nigm and Shabana, 1983;Shaw 
and Shaw, 1989). Also, Shaw (1985a, b) studied bilinear system 
using analytical method with harmonically periodic excitation. 
In this paper a system having two-sided constraints is consid
ered, and method from dynamical systems and bifurcation 
theory are employed in order to study the dynamic behavior 
of our model. 

Consider the simple system having nonsymmetrically placed 
rigid stops and subjected to nonharmonically periodic exci
tation shown in the Fig. 1. The left stop is placed right at the 

.equilibrium position of the mass. The nondimensional equa
tion of motion can be written as follows: 

x + 2ax+x = F(t);0<x<l, (1) 

where the definition of F(t) in one period T is 
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dom system having two-sided amplitude constraints. The model 
consists of a piecewise-linear oscillator subjected to nonhar-
monic excitation. A simple impact rule employing a coefficient 
of restitution is used to characterize the almost instantaneous 
behavior of impact at the constraints. In this paper periodic 
and chaotic motions are found. The amplitude and stability 
of the periodic responses are determined and bifurcation anal
ysis for these motions is carried out. Chaotic motions are found 
to exist over ranges of forcing periods. 
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Consider the simple system having nonsymmetrically placed 
rigid stops and subjected to nonharmonically periodic exci
tation shown in the Fig. 1. The left stop is placed right at the 

.equilibrium position of the mass. The nondimensional equa
tion of motion can be written as follows: 
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Fig. 1 The physical model 

(l3 0<t<D 
F(t)=) 

{0D<t<T 
with a, 0, and D are the dimensionless damping constant, 
forcing amplitude, and the duration of a square pulse, re
spectively. Impacts occur at x = 1 and at x = 0 whereupon 

x(t+)=-rx(t~) w i t h ( f + - O - 0 . (2) 

2 The Poincare Maps 
In periodically forced systems, a Poincare map is often used 

which stroboscopically samples (x, y) points at time values 
t = nT, where « = 1 , 2 and T is the forcing period. The 
Poincare section is then defined as 

L'o=[(x,y,t)\t=t0mod(T)} (3) 

and the Poincare map is defined as 

P 'O : E'O_E 'O or (xi+l,yl+,) = P'°{xhyd- (4) 

Here, t0 simple represents the particular phase of the periodic 
forcing at which the pulse is applied. 

Referring to Eqs. (1) and (2), we see that nonlinearity occurs 
at x= 1 and at x= 0. Similar to the methods described in Shaw 
and Holmes (1983) and Shaw (1985a, b, 1986), a different type 
of Poincare map can be used to study the dynamics of this 
system, the Poincare section is taken to be 

LleR+xSl=i(x,y,t)\x=l,y>0) (5) 

or to be 

T,leR+xSl={{x,y,t)\x = 0,y<0). (6) 

This section is defined as those points in the phase space which 
correspond to states at which the mass hits the stops. This 
section and map exploit the piecewise linear nature of the 
system. However, due to our nonharmonically forced system, 
we need to use both Poincare sections, and their associated 
maps, in the analysis (see Tung and Shaw (1988) for details). 

3 Existence of Periodic Motions 
There exist many possible types of periodic motions involv

ing impacts at x~ 0 and x= 1. In this section we consider only 
the period-one double-impact motion in which the mass m 
repeats its motion after one impact at x = 0 and x = 1 each 
during which one cycle of the forcing passes and an impact 
does not occur at x= 1 during the applied force. Note that by 
considering only one type of periodic motion may limit the 
generality of the analysis. 

In order to obtain explicit conditions for the existence of 
periodic motions, we may exploit tb' , niecewise linear nature 
of our model. The analysis involves the piecing together of 
several trajectory pieces in such a manner that the motion is 
repetitive, i.e., periodic. A computer-generated plot of the 
resonance curve of the periodic point y versus forcing period 
T is shown in Fig. 2. On the curve, the solid line represents 
stable motions and the dotted line represents unstable motions. 
The values shown correspond to the y component of the pe-

FORCING PERIOD 
Fig. 2 Frequency response curve, velocity versus forcing period, r = 0.9, 
« = 0.1, 0 = 3.0, D = 1.0 
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Fig. 3 Phase portrait with double impacts per forcing, r=0.9, a = 0.1, 
/3 = 3.0, D = 1.0, 7=3.2 

riodic points on the Poincare section of Eq. (5). The response 
curves shown in Fig. 2 were generated by a numerical solution 
of the matching problem (Tung and Shaw, 1988). 

4 Stability of Periodic Motions 
Referring to Fig. 3, it is seen that there are four pieces of 

a periodic trajectory which form one cycle. Hence, DP can be 
written using the chain rule as 

DP = 
d(x0,ya) 

3(ts,y5) 
9(.t$,yt) 
d(t4,y4) 

d(U,y4) 

d(x3,y}) 
3(x3,^3) 
9(^2.^2) 

d(h,y2) 

d(ti,yd 
dCi.J'i) 
d(x0,yo) 

(7) 

Performing the matrix multiplication of Eq. (7) and using 
the periodic points obtained in the above section, we can obtain 
the matrix DP evaluated on the periodic goint. Then the ei
genvalues ofDP can be written in terms of D, the determinant 
of DP and T, and the trace of DP as 

i = -±yJ(T/2)2 -D (8) 

which determine the stability of (Xo, j>o) and the corresponding 
periodic motion. Similar calculations of DP can be found in 
Tung and Shaw (1988). 

From the curves shown in Fig. 2, as the forcing period 7" is 
varied, the eigenvalues corresponding to a periodic point 
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DISPLACEMENT 
Fig. 4 Frequency response by digital simulation, r = 0.9, a = 0.1, /3 = 3.0, 
D = 1.0 

change. At point A, one of the eigenvalues will be equal to 
- 1 , in our case, and a period doubling bifurcation occurs. 
The periodic point y of point A is called a bifurcation point 
and is denoted by ybif. 

5 Simulations 
Using results of digital simulations we can check the validity 

of our solution to the equations of motion, periodic points, 
and bifurcation points. Also, chaotic motions and other re
sponses can be explored through simulation. Figure 3 shows 
the plot of phase portraits with two impacts per forcing cycle 
which is generated by digital simulations of Eqs. (l)-(2). The 
simulations can easily be performed by piecing together the 
solution from each piecewise linear equation and solving the 
boundary conditions, i.e., the crossing time and crossing ve
locity at x = Q and x= 1 by using Newton-Raphson method. 
The time step should be as small as possible when impact is 
about to occur. Simulation trouble may occur due to the fact 
that the applied force may be about to start or to cease at the 
moment. Figure 4 shows the frequency response of velocity at 
the point at which a pulse is applied versus forcing period T 
by using digital simulation. At point A the motion begins to 
undergo a succession of period doubling or flip bifurcations, 
which results in chaotic motions. It is noted that Fig. 4 matches 
very nicely with Fig. 2. 

6 Conclusions 
In this paper the dynamics of a single-degree-of-freedom 

system subjected to nonharmonic excitation have been studied. 
The periodic motions and their stability are determined ana
lytically and local bifurcations are considered. The frequency 
response curves shown in Fig. 2 indicate that there exist regions 
in parameter space for which there exist no stable periodic 
orbits. Local bifurcation analysis shows that period-doubling 
bifurcation occurs near the stability boundary which result in 
chaotic motions. These motions are irregular, bounded re
sponse to periodic excitation. Chaotic motions are found to 
exist over ranges of forcing periods. 

As forcing period T is increased past 7* =4.14, as shown 

in Fig. 4, the stable periodic motion suddenly changes to a 
chaotic motion. It has been conjectured that almost all sudden 
changes in chaotic motion are due to either tangent bifurcation 
or crises (Grebogi et al., 1982). However, from stability anal
ysis none of the eigenvalues at parameter value T* =4.14 are 
equal to + 1. In our case, this is due to the fact that a degenerate 
impact occurs, i.e., the mass hits the stops with zero impact 
velocity and causes a sudden change in response structure to 
chaos without passing through other types of stable motions 
or bifurcation. However, it is not necessary that a degenerate 
impact always results in chaotic motions but involves response 
structure change. In Shaw and Holmes (1983), a degenerate 
impact occurred during period cascades and led to another 
type of stable motion. 
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Viscoelastic Damping Calculations Using a/J-Type Finite 
Element Code 

C. J. Wilson,21 P. Carnevali,22 R. B. Morris,22 and Y. Tsuji22 

Damping factors of viscoelastically damped structures can be 
calculated using the modal strain energy method, implemented 
with a sequence of undamped modal analysis computations. 
There are significant advantages in performing these calcu
lations using p-type finite element codes. These include ease 
of mesh design, an indicator of degree of solution convergence, 
modest computation time, and an insensitivity to element as
pect ratio. Capitalizing on these advantages an algorithm is 
defined, which is effective in solving for the natural frequencies 
and modal loss factors of damped structures. The algorithm 
is demonstrated using a sandwiched cantilevered beam as an 
example. 

Introduction 

The application of surface damping treatments to small me
chanical structures for the purpose of controlling their fre
quency response to external loads or vibrations is of growing 
interest. For example, in the computer industry, by controlling 
the frequency response of components in a hard disk drive the 
possibility of head/disk crashes, as well as track misregistration 
problems, can be reduced. Since the components are small a 
weight effective method, such as constrained layer damping, 
should be used. In this method, an elastomer is fixed between 
two plates and flexural vibrations produce a shearing strain in 
the core. Due to the damping properties of the viscoelastic 
layer vibrations are reduced and natural frequencies are al
tered. 

Methods of analyzing all types of damping, including closed-
form solution techniques, have been developed over the past 
20 years. A review of the literature on damping is given in 
Nakra (1976, 1981, 1984). These analytical models have many 
restrictions and difficulties are encountered when trying to 
work with complex geometries. Even for simple structures both 
algebraic and numerical solutions of the equations of motion 
tend to be time consuming. Thus, for the real world problems 
this type of extensive analysis is not practical. However, finite 
element methods have proven successful in overcoming these 
obstacles. 

Current finite element methods for the analysis of damped 
structures can be classified into three categories: (1) complex 
eigenvalue method, (2) direct frequency response method, and 
(3) modal strain energy method. These methods are described 
in detail in Johnson and Kienholz (1982), Johnson etal. (1981), 
and Nashif et al. (1985). The modal strain energy method 
(MSE) and its application to finite element analysis, which was 
introduced in Johnson et al. (1981), is an economical way of 
making damping predictions which are useful, but not nec
essarily exact. In this method, a normal modes analysis, using 
the frequency-dependent material properties of the viscoelastic 
layer, is performed. The calculation yields the damped natural 
frequencies and modal loss factors of each of the modes of 
vibration. 

Previously, MSE has been implemented using an /z-version 
finite element code, such as MSC/NASTRAN. (Schaeffer, 
1984). An alternative to this is the p-version finite element 
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method (Babuska et al., 1981). Thep-type method has at least 
three distinct advantages over an /i-version in connection with 
a MSE analysis. The first of these is that the convergence of 
the numerical solution can be monitored as the order of ap
proximation is successively incremented. Second, thep-version 
code is relatively insensitive to mesh design. In the p-type 
method, a simple, relatively coarse mesh design can yield ac
curate numerical results. A third advantage is that there is 
rapid convergence of the method even with elements having 
large aspect ratios (see Carnevali et al. (1992) for a discussion 
of performance aspects). This makes it especially good to use 
with the constrained layer analysis, since damping layers are 
usually very thin. In particular, a p-type finite element code 
has been used previously to evaluate shearing stresses along 
material interfaces of laminate structures (Schiermeier, 1987). 

This paper describes an algorithm by which MSE is combined 
with thep-version finite element method to estimate the damp
ing properties of structures. The method is illustrated using a 
cantilevered beam with constrained layer damping as an ex
ample. Advantages of combining MSE with ap-version finite 
element code instead of an ^-version are emphasized. 

Modal Strain Energy Method 
A convenient measure of structural damping used in the 

analysis of system resonance is the loss factor. Simply stated, 
the loss factor is the ratio of the energy lost in a cycle to the 
energy stored in the system during that cycle. The loss factor, 
ri, is defined as: t\ = D/(2irW), where D denotes the energy 
dissipated per cycle and W denotes the total energy associated 
with the vibration cycle. In order to compute ij, knowledge of 
the material parameters is required. For viscoelastic materials, 
Young's modulus and Poisson's ratio are frequency dependent. 
The variation of Young's modulus with frequency is available 
from nomograms for numerous materials (Nashif et al., 1985). 
However, since little information is available on Poisson's ratio 
as a function of frequency, it is often chosen to be constant. 

In the modal strain energy approach (Johnson et al., 1981) 
the system modal loss factors are calculated using the loss 
factor of the viscoelastic material and the ratio of the strain 
energy stored in the damping layer to the strain energy stored 
in the composite structure. Strain energies are calculated using 
real normal modes of the undamped system. The mathematical 
statement for MSE is 

V_IJ_EY. ( 1 ) 

Vv SE 

where 7/5 is the loss factor of the nth mode of the composite 
structure, r]V is the material loss factor of the viscoelastic ma
terial, S£y is the elastic strain energy stored in the viscoelastic 
material when the structure deforms in its nth undamped mode 
shape, and Sis is the elastic strain energy of the entire composite 
structure in the nth mode shape. It was demonstrated in John
son and Kienholz (1982) that the modal loss factors, T)S, ob
tained from Eq. (1) are good approximations to the 
computationally more expensive complex stiffness eigenvalue 
results. It is also shown in Wilson et al. (1990) that for the 
case of small damping MSE is equivalent to a first-order ap
proximation of the complex eigenvalue problem. 

Since MSE uses undamped normal modes, a constant-coef
ficient eigenvalue problem is solved. The frequency-dependent 
properties of the viscoelastic material are accommodated using 
an iterative procedure. For each natural frequency, the material 
properties are determined and the eigenvalue problem is solved. 
Each solution is valid only at the specific frequency for which 
the material properties apply, so the eigenvalue problem must 
be solved separately for each natural frequency. 
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Finite Element Analysis 
In the /7-version of the finite element method, successively 

higher order local basis functions are used to approximate the 
solution until numerical convergence is reached (Babuska et 
al., 1981). The implementation used in this study is described 
in Carnevali et al. (1992) and includes both static and dynamic 
(normal modes) analyses for three-dimensional problems with 
an element library of solid bricks (8 nodes), wedges (6 nodes), 
and tetrahedra (4 nodes). 

Solid brick elements were used to model a sandwiched can-
tilevered beam. Typically, for /i-type codes, shell elements are 
used to discretize the constraining layers and either solid or 
shear panel elements are used to discretize the viscoelastic layer 
(Johnson and Kienholz, 1982; Lalanne et al., 1975). This is 
done to reduce the number of degrees-of-freedom used in the 
calculation. There is, however, an incompatibility in the num
ber of degrees-of-freedom per node for the different elements; 
the shell element has six, whereas the solid and shear panel 
elements have only three. As pointed out in Soni (1981), not 
all structures can be modeled easily using this combination of 
solid and shell elements, especially those with multiple layers. 
In the case of the p-version finite element code used here 
(Carnevali et al., 1991), which only uses solid elements, these 
difficulties are avoided. Since all the elements are of the same 
type, compatibility of displacements at the element interfaces 
is assured. This eliminates the need for additional constraints 
to be imposed on the system, and multiple layers can be mod
eled easily. 

In most of the computations, the eigenvalues of the model 
were extracted using a subspace iteration method (Bathe, 1982), 
but when the aspect ratio of the elements was large, the Lanczos 
algorithm (Cullum and Willoughby, 1985) was used. 

Application and Discussion 
The problem investigated (a simple cantilevered beam) has 

been studied extensively with both closed-form solution meth
ods and finite element methods. The geometry and material 

properties are the same as in Soni (1981). This particular for
mulation has been studied in Johnson et al. (1981) and Soni 
(1981). The results are compared with those presented in Soni 
(1981) which included experimental data from Drake and Tur-
borg (1980). The complex eigenvalue problem is not solved in 
Soni (1981). Instead, MAGNA-D, an /z-type finite element 
code, combined with a method to predict the structural modal 
loss factors (Unger and Kerwin, 1962) was used by these au
thors for their calculations. Several versions of the model were 
examined. The number of elements was varied from a total of 
42 (14 elements per layer) to 3 (one element per layer). The 
results are essentially independent of the number of elements 
used, provided the polynomial order is chosen to ensure the 
solution has converged. Thep-version code easily handled the 
large aspect ratios (up to 1:1400) involved. 

A block diagram of the solution algorithm is given in Fig. 
1. The process is initialized by analyzing an all-metal canti
levered beam (Block 1 and 2). Convergence of the natural 
frequencies is compared for each successive polynomial order 
(Block 3). Once the change in all the frequencies between two 
consecutive polynomial orders is less than ten percent, the latter 
polynomial order is chosen to be used for the damping cal
culations (Block 4). This loose criterion is justified since there 
is a large amount of scatter present in the material property 
data obtained from the nomogram (Soni, 1981), and there is 
considerable variation from one batch of viscoelastic material 
to another. 

Due to the variational formulation of the finite element 
method, as the convergence of the model is approached (pol
ynomial order increased) the computed frequencies decrease 
monotonically. This implies that there are two possible sources 
for frequency changes: (1) material damping and (2) variational 
convergence of the finite element method. These are two in
dependent effects and should not be confused. Therefore, once 
a polynomial order is chosen, it should be used for the entire 
iterative procedure (Block 4, Fig. 1). 

With this polynomial order fixed, the iterative process for 
the damping analysis is initiated. For a particular frequency 
of interest, the Young's modulus and material loss factor for 

Table 1 Damped natural frequencies (Hz) and modal loss factors (In 
parentheses) 

Mode 

l 

2 

3 

4 

5 

/V„, = 42 

p=% 

82.66 

(.005.1) 

510.1 

(.009.1) 

1408. 

(.0097) 

2694. 

(.0134) 

4.126. 

(.0169) 

A'„,= 21 

/)= 10 

82.66 

(.0052) 

510.1 

(.009.1) 

1406. 

(.0109) 

2697. 

(.0136) 

4.134. 

(.0159) 

Nel = 12 

/ ; = I 2 

82.67 

(.005.1) 

510.4 

(.009.1) 

1408. 

(.0097) 

2695. 

(.0134) 

4.1.14. 

(.0159) 

H«t=* 

p=\5 

82.79 

(.0052) 

511.1 

(.009.1) 

1409. 

(.0109) 

2698. 

(.01.14) 

4.13.1. 

(.0162) 

MAGNA-D 

82. 

(.0049) 

505. 

(.0101) 

1394. 

(.012.1) 

2690. 

(.0148) 

4.175. 

(.017) 

rixp. 

510. 

(.006) 

1402. 

(.009) 

2699. 

(.014) 

4180. 

(.018) 
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1 
I n i t i a l i z e wi th s ingle 
ma te r i a l . Same Young's 
modulus fo r a l l layers . 

Compute frequencies 
using p-code. 

Monitor convergence of frequencies. 
Stop computing when frequencies at 

p=i+l are w i t h i n 10% of p= i . 

Choose p=i fo r i t e r a t i v e procedure. 
Select f i r s t mode. 

Obtain Young's modulus and mater ia l 
loss fac tor fo r v iscoe las t i c layer 

from nomogram fo r frequency of 
selected mode. 

e 

latest value of Young's modulus. 

' 

7 

Obtain new value of Young's modulus 

S gnificantly difi erent from old va ue? 

YES 

Select next mode of in te res t 
and reset p= i . 

I t e r a t i v e process terminated. 
Use converged value of Young's modulus to 

get accurate value for frequency. 
Increment polynomial order of p-code to 1% 

convergence in frequency. 

Fig. 1 Flowchart representing solution algorithm 

the viscoelastic material are obtained from the nomogram 
(Block 5). A normal modes analysis at the chosen polynomial 
order is then used to compute the natural frequencies of the 
damped structure (Block 6). A new Young's modulus corre
sponding to the new frequency is obtained from the nomogram 
(Block 7). If the difference between the new and previous values 
of the Young's modulus (Block 7) is greater than that of the 
error in reading the nomogram, the new Young's modulus is 
used to compute new damped natural frequencies. Otherwise, 
the iterative process is terminated (Block 8). The converged 
value of the Young's modulus is then used to obtain a precise 
value of the damped natural frequency. This is achieved by 
incrementing the polynomial order in the p-version code until 
the frequencies have converged to within one percent (Block 
8). The entire process is repeated for each frequency (Block 
9). Thus, thep-type code implemented in the manner described 
can be used to create an efficient iterative process whereby 

natural frequencies and modal loss factors of damped struc
tures can be determined. 

The damped natural frequencies and corresponding modal 
loss factors of the converged solutions have been computed, 
for illustration purposes, using different numbers of elements 
and polynomial orders as in Table 1. As the number of elements 
is decreased, the polynomial order must be increased to obtain 
similar accuracy for each of the models. Table 1 also includes 
data from Soni (1981) for comparison in the last two columns. 

Within the accuracy of the material properties as obtained 
from the nomogram, the values of the damped resonance fre
quencies from the p-version code are in good agreement with 
those from both MAGNA-D (Soni, 1981) and the experimental 
results (Drake and Turborg, 1980). The values of the modal 
loss factors also agree well except at very low damping. As 
stated in Soni (1981), this discrepancy may be attributed to 
errors in the measurement; with small damping, the sharpness 
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of the amplitude-frequency response curve makes it difficult 
to locate the half-power bandwidth points. 

Conclusion 
This paper demonstrates the attractive features of combining 

the modal strain energy method with the p-version finite ele
ment method to estimate damping in structures. It has been 
shown that since a p-type code is not as sensitive to element 
aspect ratio as an h-typt c6de, far fewer elements can be used 
in the analysis. The p-version code can be used with a low 
polynomial order to create an efficient iterative process for 
use with the modal strain energy method; for the /j-version, 
the entire structure must be modeled to full accuracy (many 
elements). These advantages imply less user involvement and 
can result in shorter design cycle times. A simple example of 
a cantilevered beam with constrained layer damping was stud
ied, and good agreement was obtained with known solutions 
of damped natural frequencies and modal loss factors. How
ever, the same process can be applied to more complicated, 
realistic structures. 
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Predicting Rebounds Using Rigid-Body Dynamics1 

Raymond M. Brach.2 In a recent paper, Smith (1991) pre
sents comments related to specific items from the works of 
Brach (1984, 1989). In particular, Smith says: 
(1) the statement of Brach (1989) that the kinematic coefficient 

of restitution is bounded by 0 and 1, that is 0 < e < l , is 
incorrect or at least unsupported, 

(2) Eq. (19) in Brach (1984) for the energy loss of a collision 
of two particles is incorrect, and 

(3) if the quantity, K, in the denominator of Smith's expression 
(unnumbered) for the change in kinetic energy AK were 
replaced by 1, Smith's results would agree with Brach's 
energy loss expression. 

The work of Stronge (1990) clearly points out that an en
ergetic coefficient of restitution, E2, is bounded by 0 and 1, 
that is, 0<E2<:\. Since the kinematic coefficient, e, and en
ergetic coefficient, E2, are generally different, Smith's criticism 
of Brach's bounds as summarized in item 1 above is justified. 

Equation (19) for the energy loss of a planar particle collision 
is Brach (1984) follows directly from Newton's laws of particle 
dynamics as applied to collisions. This is demonstrated clearly 
in Brach (1984) and by a different method in Brach (1991). 
Consequently, Smith's claim in item 2 above is itself incorrect. 

With reference to item 3 above, if the quantity K is replaced 
by 1, the appropriate expressions of Brach and Smith have the 
same form, however, there exists a subtle and important dif
ference. In Smith's equation for AK, ^ is a coefficient of 
friction whereas in Brach's Eq. (19) /x is an impulse ratio. 
These can be equal, but only under certain conditions. Smith's 
equation will give a negative energy loss (which is physically 
unrealistic) for relatively small initial tangential contact ve
locities and relatively large coefficients of friction. Brach uses 
the impulse ratio specifically to avoid this problem. 

'By Charles E. Smith and published in the September 1991 issue of the 
JOURNAL OF APPLIED MECHANICS, Vol. 58, pp. 754-758. 

2 Department of Aerospace and Mechanical Engineering, University of Notre 
Dame, Notre Dame, IN 46556-5637. 
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Author's Closure3 

Introducing the concept of particles to an analysis of col
lisions with friction brings the need to resolve the following 
issue: To permit the definition of friction and normal com
ponents of the interactive forces, the bodies must have nonzero 
dimensions. This means that, except for peculiar shapes or 
special combinations of configuration and relative velocities, 
there will be moments about the centers of mass and corre
sponding changes in angular velocities. These changes are im
plied to be zero in "Newton's laws of particle dynamics as 
applied to collisions," to which the discussion refers. The 
contributions to change in kinetic energy from changes in an
gular velocities and from changes in velocities of the mass 
centers can be compared by examining expressions resulting 
from a rigid-body analysis. 

One such expression is Eq. (26) of Brach (1989), which is 
followed by the statement, "This suitably reduces to the point 
mass results of Brach (1984)." However, reduction of this 
equation or the unnumbered equation of item 3 of the dis
cussion to Eq. (19) of Brach (1984) requires that the ratio of 
body dimension to central radius of gyration approach zero. 
This is not a "suitable" reduction. 

The unnumbered equation of Smith (1991) will not predict 
an increase in kinetic energy, unless the delimiter (a > 1), 
which appears immediately before the equation, is ignored. 

The distinction between coefficient of friction and impulse 
ratio might be subtle to some because of Brach's unfortunate 
choice of the symbol ft to represent the latter, but the dis
crepancy under discussion remains independent of this dis
tinction. 

3Charles E. Smith, Professor, Department of Mechanical Engineering, Oregon 
State University, Corvallis, OR 97331. 
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